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Abstract
Infrastructure managers in railway systems are striving to have as
efficient track utilization as possible. There are no unanimous inter-
pretation of efficiency in terms of track utilization, but the aim of the
Swedish Transport Administration is to allocate track capacity such
that societal benefit is maximized. This means that the tracks should
be used by as much traffic as possible and by traffic that provides as
much benefit for the society as possible.

To allocate track capacity such that the track utilization is optimal
would be an easy task if the track capacity were not a scarce resource.
Today, many train operators share railway network and there are cases
when two or more operators want to use the same track capacity at
the same time. The infrastructure manager must then make priorities
and reject some operators, and the question is which operators to
reject. The guiding principle is to grant the operators that provide
the highest societal benefit access to the tracks. However, the question
would then change into how to know which operator that provides the
highest societal benefit.

In this thesis, the societal benefit of publicly subsidized traffic
is estimated using social cost-benefit analysis. Mathematical mod-
els and methods are developed for quantifying and computing the
number of departures for the publicly subsidized traffic and their dis-
tribution in time, i.e. a train timetable, that provides the maximal
societal benefit in a social cost-benefit analysis setting. The societal
benefit of commercial traffic is estimated using the market value for
their requested train timetables. The market value is set using dy-
namic pricing. A suggestion of a dynamic pricing process that can
be used in the train timetabling process is described. Mathematical
models and methods for calculating the supply and demand of a track
access request are developed and tested, which enables the use of a
dynamic pricing process on track capacity.
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Chapter 1

Introduction

Railways have since the end of the 19th century been an important
mode of transport. Due to the high speed and possibility to ship
heavy goods in large quantities, trains have through the time offered
an increased latitude to people and new opportunities to the develop-
ment of industries producing both raw materials and refined products.
Still today, railways are crucial to Swedish production, travelers and
society.

The Swedish railways were nationalized during the 1940’s when
the government agency, the Swedish State Railways (Statens Järn-
vägar), bought the railway infrastructure owned by private compa-
nies. Almost all railway infrastructure maintenance and train op-
erations were to be performed by the Swedish State Railways. In
1988 the ownership of the railway tracks were transferred to the new
governmental agency, the Swedish Rail Administration (Banverket),
while the Swedish State Railways kept their operational responsibili-
ties. The railway operational monopoly of the Swedish State Railways
ceased in 2001 when the liberalization of the Swedish railways en-
sued. After 2001, the operations were to be performed by competing
companies. Today, the government agency, the Swedish Transport
Administration (Trafikverket), owns the railway infrastructure and
there are multiple companies operating the traffic, such as MTR, SJ,
Green Cargo and Hector Rail. In the year 2016 there were in total 31
train operators on the Swedish railway network.

Every year the Swedish Transport Administration opens for track
access requests for operator transportations and maintenance works.
The railway network is heavily utilized and railway tracks are a scarce
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Chapter 1. Introduction

resource. Two trains cannot travel on the same single track section
at the same time because of safety measures taken to avoid collisions
and accidents. Thus, there can only be a limited number of trains
on a railway track and at some point the railway network cannot fit
another access request. As a consequence, some requests from oper-
ators to access the railway infrastructure need to be either altered or
rejected. It is stated by the Swedish law that the Swedish Transport
Administration must consider the societal benefits when planning how
the railway infrastructure should be utilized. This means that the aim
at the Swedish Transport Administration is to grant access to trains
such that the resultant value of the train timetable is maximized in
terms of societal benefits. However, to estimate and compare the
value of the societal benefits in a fair setting is not an easy task. Pas-
senger traffic, freight traffic and maintenance work have completely
different properties and to find the parameters enabling these proper-
ties to be compared in a fair, correct and transparent way is far from
trivial. The properties of the transported goods can vary enough be-
tween different freight trains to make it hard to estimate a fair and
accurate value of the societal benefits. The same holds for passenger
trains and maintenance works. Thus, finding a mathematical expres-
sion that acceptably mirrors the value of the societal benefits of a
train seems like an difficult task.

Since the liberalization of the railway operator market, new infor-
mation of the dynamics of the railway market has emerged. Opera-
tors know how their customers want to travel and what type of service
they request. These operators then apply for access to the railways
and compete for some track capacity, with which they could make
the highest revenue. Thus, there is a competition for track capacity
that is known to the infrastructure manager. This competition can
typically be described as a demand. Track capacity in high demand
is typically the congested tracks where some access requests have to
be rejected. Operators partaking in a market have the best knowl-
edge of the market dynamics. This means that these operators know
the demand for their services and the revenue they get from these
services. To appeal as many passengers or transports as possible,
the train operators tries to serve the demand to their best possible
ability and, subsequently, requests track access for train timetables
that they think are the best for the customer demand. Generally,
the operators that are the best at finding attractive services or train
timetables for their customers to an appealing price also has a higher
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revenue. The revenue an operator gets from a train timetable is partly
concealed from an infrastructure manager that only charges a fixed
fee for access to the railway infrastructure. The infrastructure man-
ager may not know anything about the number of tickets sold or the
transportation fee or the operators’ willingness to pay for some track
capacity, which are important aspects when analyzing the societal
benefit, but these factors accumulates into congested tracks, which
the infrastructure manager does know about. Thus, to estimate the
societal benefit of a train timetable from a commercial operator, we
use the market price, since an operator that gets a larger revenue
is generally also willing to pay more for having their access request
granted than operators obtaining a lower revenue. This is a better
estimate to the societal benefit than trying to make a mathematical
analysis of the societal benefit of a train path. To find the market
price on track capacity would also provide further information about
the market dynamics for access to different tracks.

This thesis contribute to a more efficient track capacity utilization
in the perspective of how track capacity can be allocated using market
forces. We start by giving an overview of some of the planning prob-
lems in the railway sector. Then, a more thorough description of the
current train timetabling process at the Swedish Transport Adminis-
tration is given. The shortcomings of this train timetabling process is
explained and an altered train timetabling process is given, in which
the shortcomings are addressed. This altered train timetabling pro-
cess includes a market for track capacity, where the societal benefit of
commercial operators are estimated with the market price. The value
of the publicly subsidized traffic is set using social cost-benefit anal-
ysis, which is a standard method for estimating the societal benefit
of infrastructure investments and policies. The market price is found
by letting the operators partake in an auction of the track capacity
in high demand, and then set a price on the rest of the track capacity
using dynamic pricing.

Optimization is a key tool in this thesis to find the train timeta-
bles and hence an overview of the existing optimization models for
the train timetabling problem is given. An introduction of social
cost-benefit analysis is given which emanates in a description of the
research performed in how a social cost-benefit analysis can be used
on track capacity before the train timetables are known. Dynamic
pricing is introduced and then a description of the research on how
dynamic pricing can be used to find the market price on track capacity
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is given.
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Chapter 2

Background

This chapter provides an overview of the planning problems in the
railway sector in Section 2.1, funneling down to the train timetabling
problem in Section 2.2, then emanating in a description of an al-
tered train timetabling process in Section 2.3. This altered train
timetabling process serves as the basis for the research described in
this thesis.

2.1 Planning problems on the railway
From an outsiders’ point of view, the railway might not seem to be
very complex. The train timetable for an operator needs to be planned
and the crew should start and leave work at their home stations. As
usual when digging deeper into a subject or question, more informa-
tion gives new insights of the complexity. Not only should the oper-
ators plan their train timetables, the infrastructure manager should
coordinate all train timetables from all operators such that the secu-
rity regulations are not violated. Further, the operators need to plan
the schedule for the crew and also make sure the rolling stock can
cover the train timetable. These planning problems are only a few of
all the planning challenges the actors in a railway system are facing.

The planning problems are divided into four categories depending
on their time-horizon. Figure 2.1 shows these categories and gives
a brief overview of some of the planning problems in each category.
This section describes only the most important aspects of each cat-
egory. For more information of each category, Caprara et al., 2007
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Chapter 2. Background

and Huisman et al., 2005 provide a more thorough overview of every
planning problem.

2.1.1 Strategic planning
The strategic planning regards questions which need to be resolved
more than a year in advance and concern large investments. For in-
stance, train units and new tracks should last for decades and cost
enormous sums to acquire and are not something an operator or in-
frastructure manager does in a whim. The delivery also takes a long
time since the train units or tracks needs to be built. The decision on
whether to invest or not in new train units or tracks should be based
on a good forecast of the future properties of the railways and future
demand for traveling or transporting on the railway while keeping
the future strategy of the train operator or infrastructure manager in
mind. If a train operator investigates if a new train should be bought
or a new crew depot should be opened, it needs good estimates of fu-
ture demand and an idea of which level of service the train operator
wants to provide to its customer.

The strategic planning category can be divided into the following
problems:

• Crew Planning:
Hiring and educating new crew members are processes taking
more than a year and usually concerns a smaller investment.
Therefore, investigating the future locations and required capac-
ities of crew depots and the long term need for train drivers and

Figure 2.1: Some of the planning problems in the railway sys-
tem.
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2.1. Planning problems on the railway

conductors is of great importance. These questions depend on
the allowed crew workload and the prospected timetable (such
as frequencies of service).

• Rolling Stock Management:
Buying additional rolling stock is costly and if new purchases
can be avoided large savings can be made for the company.
Thus, a train operator needs a good decision support for man-
aging the rolling stock. The future demand needs to be fore-
casted, especially the demand during the rush hours, and the
train operator needs to have an idea of which service level it
wants to provide to its customers. Decisions made could be
acquisitions of new locomotives or wagons and their capacities.
Also important decisions could be upgrading, hiring or selling
trains and train units. As usual, the costs are minimized while
keeping the target service level for the customers.

• Line Planning:
Line planning regards planning which stations to stop at and
in which frequency to operate between the stations to meet the
future demand. The operator wishes to maximize the service
provided to the passengers while keeping the estimated opera-
tional cost at a minimum. A measure of the service provided
can be the number of transfers for the passengers, waiting time
at transfers and the travel time.

• Network planning:
To build new railways are expensive and the results should last
for years. The Swedish main lines were planned and built during
the 1860’s and even though they are modernized today, they still
have almost the same routes. Thus, the decision on which cities
to connect today will have an important impact over a very
long time. The problem also concerns whether to build single
or double track and other technical aspects important for the
operation.

2.1.2 Tactical planning
The planning horizon of the problems in the tactical planning is about
one year prior to the day of operation. The railway planning in this
category is made in a more microscopic level than in the strategic
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Chapter 2. Background

planning and more details are needed as input. The main focus is
to provide enough information to the train operators for their oper-
ational planning while ensuring the infrastructure manager that the
traffic is possible to run on the infrastructure.

• Operator timetable planning:
The operators need to find their train timetables such that the
service to their customers are at the desired level while mini-
mizing the costs. A train timetable is the times every train on
the network passes, stops or leaves every defined station or geo-
graphic location on the route. The resulting operator timetable
is then handed in to the infrastructure manager when requesting
access to the railway network.

• Train timetabling:
The operator timetables need to be coordinated by the infras-
tructure manager into one train timetable for the entire Swedish
network. The task of the infrastructure manager is to inves-
tigate that the requested operator timetables are possible to
operate without any safety issues. There are two parts of this
process. The Annual train timetabling process, where the safety
issues are resolved via coordination between operators and the
Short term-process, where the requested operator timetables
must adapt to existing train timetable.

• Platform assignment:
This problem concerns the routing of a train inside the sta-
tion and is planned in a more detailed level than in the train
timetable planning. Input to this planning problem is the ar-
rival and departure times from a station given by the train
timetabling problem. The output of the platform assignment
problem is a route within the station for every train. On larger
stations with a complex topology and many trains this problem
becomes very challenging.

2.1.3 Operational planning
The operational planning provides the details of the train operation
to the train operator. The planning in this category starts when
the infrastructure manager confirms the train operators’ timetables.
When the train operators know their timetables they can start to
assign crew and rolling stock to cover the confirmed timetables.
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2.1. Planning problems on the railway

• Rolling stock circulation:
The rolling stock circulation concerns the train operators’ de-
cision of what type and how many train sets that should be
assigned to operate the traffic. By coupling and uncoupling
the train sets, the passenger or freight transport demand can
be satisfied while minimizing the operational cost. The opera-
tional cost for a train unit depends on the maintenance cost on
the trains and power supply, i.e. the longer distance a train set
travels, the higher is the cost. This planning problem occurs on
both a tactical and operational level.

• Crew scheduling:
Given the operator train timetable, the schedule for the crew is
planned. The crew members are assigned to a train trip such
that all trips are covered by a crew member while the regulations
of workplace safety and health are followed. Further, the crew
scheduling problem should ensure that each crew member starts
from and ends in his home depot. In some cases, duties are
assigned to each crew member. The main goal is to minimize
the amount of crew members or keeping the cost to a minimum.
This planning problem occurs on both a tactical and operational
level.

• Shunting planning:
Shunting is when trains are separated and put together into
new trains. This is mostly used in freight traffic in order to pick
up shipments with one train and then rearrange the shipments
and send them to the shipment destination with another train.
Shunting is done in a shunting yard where the train sets are
arranged by being pushed over a hump and into the right track
where the new train is constructed.

2.1.4 Short-term planning
These problem concerns delay management and modifications to the
decisions made in the tactical and operational planning. For instance
a crew member might call in sick and need a replacement.

• Dispatching:
Almost all traffic is controlled by a train dispatcher. Often a
train might fail to follow the timetable and the dispatcher must
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Chapter 2. Background

then modify the timetable in real-time to restore the original
timetable as much as possible. The problem is very similar to
the train timetabling problem but must be solved much faster
and have a higher level of detail. Usually, the dispatching prob-
lem must plan both the train timetable and route train in the
stations.

• Crew scheduling and rolling stock circulation:
The original plans in the tactical and operational planning can
be in need of alterations due to delays, broken vehicles or sick
crew members. The operators need to manage these problems
fast such that the disruptions from the original plan or the eco-
nomic losses are minimized.

2.2 Train timetabling in Sweden
This section provides an introduction to the train timetabling process
in Sweden by describing the current political and regulatory condition
in 2.2.1 and train timetabling process in Section 2.2.2. Section 2.2.3
illustrates some shortcomings to the train timetabling process.

2.2.1 Current political condition
The last decades more political attention have been guided towards
the railway sector. Some of the reasons for the increasing attention
are the growing demand for both freight and passenger traffic and
the environmental benefits for choosing trains over car or airplane.
The largest and most influential recent policy change that affects the
railway sector today is the liberalization in 2001, when the railway
infrastructure was opened for competition between train operators.
The publicly subsidized traffic, like many regional and commuter train
operators, signs a contract where the operators agree that to a spe-
cific fee operate the traffic given by some guidelines provided by the
regional public transport authority. All other commercial operators,
mostly long distance passenger trains operators and freight operators,
decide for themselves the extent of their traffic and also let their con-
sumers pay the costs. Thus, all commercial operators should compete
for customers in a market and any company fulfilling the conditions
for being a train operator can apply for track capacity.
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2.2. Train timetabling in Sweden

A separation of the railway infrastructure from the operation is
proclaimed by the European Union via the First Railway Directive
91/440/EC. In this directive, the European Union also advocates the
aim for a competition on the train operator market, while the in-
frastructure manager is responsible for granting access to the railway
network. To aim for a competition between operators means that
operators compete on equal terms for customers. From an infrastruc-
ture managers point of view, equal terms for the operator means that
there should be equal possibilities for operators to be granted access
to the railway network to operate trains. Whether or not an operator
is granted the right to run a train a certain time, is a decision the
infrastructure manager takes, since it is the infrastructure manager’s
task to coordinate all requests to operate trains and requests to per-
form track maintenance. This is called the train timetabling process.
The result from the coordination is a timetable for the entire railway
network that is in the infrastructure manager’s possession.

The request from the European Union of maintaining a fair and
transparent train timetabling process to the operators is enforced
by the Swedish law, and thus becomes a rule the Swedish Trans-
port Administration has to adhere to. A fair and transparent train
timetabling process means that the reason why an operator do not
get the train path it has applied for into the train timetable should
be clear and that the train timetabling process should be on equal
terms between operators and maintenance undertakers.

2.2.2 The train timetabling process
During the train timetabling process, the Swedish Transport Adminis-
tration coordinates all track access requests from both operators and
maintenance undertakers. The result is a detailed train timetable
without conflicts or safety violations. Figure 2.2 gives an overview
of the three steps of the train timetabling process which are further
described below.

The train timetabling process starts, in step 1 in Figure 2.2, for
the Swedish Transport Administration when the Network Statement
is written. The Network Statement contains information about larger
maintenance works, properties and limitations of the railway infras-
tructure and rules and regulations for the operators. The Network
Statement is published in January each year. The publication also
marks official start of the Annual train timetabling process since it
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Chapter 2. Background

Figure 2.2: The train timetabling process at the Swedish
Transport Administration.

is the day the Swedish Transport Administration opens for applica-
tions for train paths from train operators. A train path is a route
for a train through the railway network combined with specific times
representing when the geographic locations on the route should be
passed by the train,

The Annual train timetabling process in step 2 in Figure 2.2 aims
at coordinating all train path and maintenance work applications into
one train timetable. Figure 2.3 gives a brief overview of the Annual
train timetabling process at the Swedish Transport Administration.
First an operator or a maintenance undertaker applies for a train path
or maintenance work. The deadline for handing in train path appli-
cations is in April. After the train path application deadline, the
Swedish Transport Administration tries to fit every train path and
maintenance work applied for into a train timetable. Minor adjust-
ments are made to the applications to avoid safety issues. This results
in a proposed train timetable. If any operator does not approve the
adjustments to their train path application, the Swedish Transport
Administration coordinates discussions of new adjustments between
the operators applying for the conflicting train paths. In some cases

12



2.2. Train timetabling in Sweden

it is impossible to find adjustments such that all train paths fit into a
train timetable, without one or more operators not accepting the pro-
posed adjustments. This is a dispute over track capacity. In disputes
over track capacity, the track is declared overloaded and the Swedish
Transport Administration has to conduct a track capacity analysis
and implement a capacity reinforcement plan. The Swedish Trans-
port Administration also has to rule out which train path application
to reject from the train timetable. This is done by first finding some
train timetable options of how the train paths can be altered to fit in
the train timetable and then calculating and comparing the societal
cost of these different options. The mathematical formulation for this
societal cost is called the priority criteria. The name comes from the
the fact that the mathematical formulation is used for prioritizing
train paths and there are some criteria which needs to be fulfilled in
order to be assigned parameters with higher values. The costs in the
priority criteria are based on for instance travel time and the magni-
tude of the adjustments that are made to the train path application
in the train timetable option. The parameters depend on whether the
train is a passenger train or freight train, type of passengers and the
value of the goods. A number of train timetable options are made and
using the mathematical formulation the societal cost of each option
is calculated. Then, the option that is causing the lowest cost to the
society is chosen, since the lowest societal cost provides the highest
societal benefit. When all train path applications have been accepted
or rejected the established train timetable is published. The Annual
train timetabling process ends by publishing a so called established
train timetable.

The Short term-process in step 3 in Figure 2.2 starts when the
established train timetable is published. Many train operators do not
know their transport demand by the deadline for train path applica-
tion in the Annual train timetabling process. The deadline for train
path applications are sometimes very long before the day of opera-
tion. In the worst case, the train path application deadline can be
one year and eight months before the day of operation. There are
therefore many late train path applications which the Swedish Trans-
port Administration needs to consider. These train path application
are treated in the Short term-process. The train path applications
are treated on a ”First come, first served”-basis, which means that
the train path and maintenance work applications are treated one by
one as they arrive to the Swedish Transport Administration, with-
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Figure 2.3: The Annual train timetabling process at the
Swedish Transport Administration.

out being compared based on societal benefits and costs like they
would have been in the Annual train timetabling process. The train
paths applied for in the Short term-process are not allowed to change
any train path in the established train timetable and the reason for
acceptance is simply that the train path is not in conflict with the
established train timetable. If a train path application is accepted it
becomes a part of the established train timetable. Train path appli-
cations can be handed in up to 5 days before the day of operation
and the outcome is a final train timetable.

The Swedish Transport Administration is about to implement new
methods for both the Annual train timetabling and Short term pro-
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2.2. Train timetabling in Sweden

cess. The purpose is to make the train timetabling process more effi-
cient and more adaptable to the needs of the market. The aim is also
to simplify the timetable planning for both the train operators and
the infrastructure managers and use track capacity more efficiently by
gradually constructing a detailed timetable. The fundamental idea is
to only specify details of a train path when these details needs to
be known. More practically, instead of applying for train paths, the
operators applies for delivery commitments. A delivery commitment
is a set of departure and arrival times which are important to the op-
erator when running the train. The difference between a train path
and a delivery commitment is illustrated by the example in Figure
2.4. Today, operators specify train paths when they apply for access
to the tracks. Figure 2.4a shows a train path with the specified times
the train should depart from, arrive to and pass every intermediate
station on the route. In Figure 2.4a, these times are marked with
crosses. From an operator point of view, most of these times are
unimportant at the time they apply for a train path. The important
times are the departure times from and arrival times to stations where
passengers can start or end their journeys or goods will be loaded or
unloaded. In the future, these important times for the operator, are
enough to apply for in the train timetabling process. The Swedish
Transport Administration will then commit to fulfill these important
times when ”delivering” the train timetable. Thus, these important
times are the delivery commitments. Figure 2.4b shows the deliv-
ery commitment marked with crosses and three possible train paths
fulfilling the delivery commitment. Since the departure and arrival
times at all intermediate stations are not fixed, there are some options
for the timetable planner to plan and make operational adjustments
to the train path. As a result the infrastructure manager can plan
crossings, overtakings and other details of a train path later than
in the Annual train timetabling process. Imagine that an operator
applies for a train path in the Short term-process. With delivery com-
mitments, there are some flexibility in the train timetable such that
the already accepted trains can be moved and fit the new train path.
Figure 2.5 illustrates the problem when planning a train timetable in
single track using train paths and how using delivery commitments
can ease the problem. In conclusion, the train timetable can be made
more efficient and include more train paths.

One other change to the train timetabling process is the new plat-
form, called the ”Capacity portal” (sv. ”Kapacitetsportalen”). In
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Chapter 2. Background

(a) (b)

Figure 2.4: The difference between a train path and a delivery
commitment for a train running from A to D. (a) The operator
applies for a train path defined by the crosses. The infrastructure
manager has only one option for planning the train path (the red
solid line). (b) The operator applies for a delivery commitment
defined by the crosses. The infrastructure manager has a number
of options for planning the train path. Three suggestions are
shown (red dashed line).

the Capacity portal, the operators can themselves investigate and
submit their applications for delivery commitments. The overview of
available track capacity and the possibility for the operators to test
different possibilities of delivery commitments results in a more trans-
parent track allocation. The current changes to the train timetabling
process helps the infrastructure planner to plan the train timetable
more efficiently and gives more freedom to the operator to overlook
the alternatives when a train path cannot be included in the train
timetable.

2.2.3 Shortcomings of the train timetabling process
Even though the changes described in the previous section changes
result in a better use of track capacity, there are some shortcomings
of the current train timetabling process that is not addressed by the
current changes. These shortcomings cause the Swedish Transport
Administration to not reach its goal of a transparent railway market
with a competition for train paths, Eliasson and Aronsson, 2014. The
shortcomings are:

1 The priority criteria, used for investigating which train path

16



2.2. Train timetabling in Sweden

(a) (b)

Figure 2.5: Difference between a train timetable consisting of
train paths and delivery commitments. The track is single track.
(a) The blue solid line represents already planned train paths,
i.e. all station arrival, departure and passing times are fixed,
and the black dashed line represents a train path application.
The train path application is impossible to include in the train
timetable. (b) The smaller crosses are already planned deliv-
ery commitments corresponding to the train path in the same
color. Using delivery commitments, only the times marked with
a cross are fixed. The train paths are used to ensure that the
delivery commitments are possible to plan in a train timetable.
The operator applies for delivery commitments marked by the
large crosses. The infrastructure planner investigates if the train
path would violate the requested delivery commitments given
the train paths from the already planned delivery commitments.
The application can be included in the train timetable without
violating any other delivery commitment.
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applications to reject in disputes over track capacity in the An-
nual train timetabling process, does not include the alternative
departures for the passengers.

2 The priority criteria cannot value commercial traffic correctly
in terms of societal benefit.

Further there is another shortcoming that is not mentioned but ad-
dressed by Eliasson and Aronsson, 2014. That is:

3 A train path application in the Short term-process is not com-
pared with other train paths based on its societal cost.

The first shortcoming stems from the mathematical formulation
of the priority criteria. Consider a line for commuter traffic. If the
line is initially operated by two departures and one of the departures
is canceled, then the number of alternatives left for the passengers are
only one. If the line is operated by ten train paths and the number
of train paths decrease to nine, there are more alternatives left for
the passengers. Thus, the societal cost should be lower for the second
example than the first, since the latter example gives the passen-
gers more alternative departures. However, more alternatives mean
a higher operating cost and if the travel demand is not very high,
too many alternatives may be too costly. Thus, the number of al-
ternatives should be a balance between the travel demand and the
operating cost. The priority criteria does not consist of such factors,
Eliasson and Aronsson, 2014.

For the second shortcoming the problem is that it is hard to es-
timate the value of the transported passengers and goods for com-
mercial traffic, Eliasson and Aronsson, 2014. The actual transported
number of passengers or goods are not something the operator needs
to report data of and this data cannot be validated since this infor-
mation is regarded as a business secret and is thus protected by the
Swedish law. Operators have the right to not report what goods or
how many passengers they transport between which stations and a
governmental agency does not have the right to access any opera-
tor’s transport contracts or transport data. It is also hard for the
Swedish Transport Administration to know what the demand is for
different transports and travel options since quite extensive surveys
need to be performed in order to get the right level of details needed
to make a good cost estimate. For this reason, it is hard to get a good
enough estimate of the parameters which is used in the calculus for
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investigating which train paths application to reject in disputes over
track capacity. Thus, the parameters in the priority criteria do not
correctly mirror the societal costs and an operator may be assigned
a lower value even though the train path has a higher value. Fur-
ther, it is impossible to use the calculus when it comes to competing
operators attracting the same customers since there are no competi-
tion factor in the calculus. For instance, if there were two high speed
train operators requesting conflicting train paths between the same
cities, the calculus would result in the exact same value for both train
path applications. There would then be no possibility to fairly and
transparently break the tie between the operators. On the Swedish
deregulated railway market this case might occur and would then be
in discord with the task of the Swedish Transport Administration to
have a fair and transparent competition on the railway market.

The last shortcoming of the current process to attain a good com-
petition is that train path applications in the Short term-process are
not compared based on their economical benefits and costs. The
application deadline for the Annual train timetabling process is too
early for many operators, especially freight operators, which do not
know their transport demand that long in advance. This causes large
losses for these operators, since adapting to the published timetable
means longer travel times and higher costs for operating the train
and salaries for the train driver. It can also be the case that business
opportunities are lost for these operators since it is not possible to
get train paths that are competitive enough. To postpone the ap-
plication deadline would not ease the problem, since passenger train
operators need an early deadline to set up their ticket sales. Thus
another solution is needed that takes these aspects into account.

2.3 A market based train timetabling pro-
cess

In order to overcome all shortcomings previously stated in Section
2.2.3, Eliasson and Aronsson, 2014 suggest a market for track capacity
in the train timetabling process. The operators willingness to pay
will set the price on track capacity and determine which train path
application to reject in disputes over track capacity. In that case,
the exclusion of applications will become more fair. The price of a
train path can be based also on the demand for track capacity. If it
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is very likely that a train path will be applied for in the future, and if
that train path potentially will be in a dispute with a train path that
is applied for today, then the operator applying today should pay a
price based on the demand for this future train path. Thus, train
paths which are likely to be applied for late in the Short term-process
can be considered in the process before they actually are applied for.

The new market based train timetabling process suggested by
Eliasson and Aronsson, 2014 is divided into four steps. These are:

1 Reserving track utilization for publicly subsidized traffic in the
Network Statement.

2 Auctions of track capacity for commercial traffic in the Annual
train timetabling process.

3 Dynamic pricing of track capacity for commercial traffic in the
Short term-process.

4 Evaluation of previous timetabling process and initial analysis
before the next timetabling process.

Figure 2.6 illustrates how these steps are related in the train timetabling
process.

The train timetabling process starts in step 1 by investigating
how much track capacity the infrastructure manager can reserve to
the publicly subsidized traffic. Publicly subsidized traffic is train traf-
fic that is entirely or partly paid for by taxes via subsidies from the
municipality or county, like some regional and commuter trains. Pub-
licly subsidized traffic will not be allowed to partake in the train path
market. The reason for this is that publicly subsidized traffic have
other incentives than the commercial traffic. The commercial traffic
aims to maximize its revenue and survive on the market, while the
publicly subsidized traffic aim to provide a good service to the trav-
elers in a region and the financial incentives are not as prominent.
To equal publicly subsidized traffic with commercial traffic on a mar-
ket is not fair and would, due to the different incentives, hinder the
market forces to provide an economically efficient train timetable. To
solve the problem, the publicly subsidized traffic is excluded from the
train path market, and instead the infrastructure manager analyzes
how much track capacity that is optimal to reserve for the publicly
subsidized traffic, which solves the problem. The size of the track
capacity for publicly subsidized traffic is measured as the number of
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Figure 2.6: The new market based train timetabling process.

train paths that is operating a regional or commuter line. The opti-
mal size of track capacity is found by comparing the market value of
train paths with the societal benefits of the publicly subsidized traffic
using social cost-Benefit Analysis. Chapter 6 in this thesis describes a
method for using social cost-benefit analysis to find the optimal track
utilization for publicly subsidized traffic.

All commercial traffic compete for track capacity on a market
priced with either auctions, in step 2, or dynamic pricing, in step 3.
An operator is striving to get revenues from its customers by providing
a service to them. For one operator to maximize its revenues, the
operator wants as high revenue as possible from its passengers or
transports. Thus, if an operator is willing to pay more for some track
capacity than another, then that operator is generally providing a
more fruitful service to its customers. The operator with the highest
willingness to pay, probably provides the most fruitful service and
generates most societal benefit. The market price is the outcome
of the operators willingness to pay and the available track capacity.
Thus, setting a market price on track capacity yields a good estimate
of the societal benefit of a train timetable.
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In the in the Annual train timetabling process in step 2, auctions
between the operators are used to set the price. Operators apply for
delivery commitments as usual until the deadline. Then, the Swedish
Transport Administration sets up a number of train paths based on
what operators have applied for. The auctions then concern these
predefined train paths. The reservation price can be based on the
social cost-benefit analysis made on the publicly subsidized traffic
and the market value of the previous year on the track capacity. The
operators that are the highest bidders get their desired train paths.

In the Short term-process in step 3, dynamic pricing is in this the-
sis used to set the price, i.e. the leftover track capacity together with
the reserved track capacity after the auctions. Dynamic pricing is a
principle to set a price when there is a limited number of goods to sell
that loses its value after a certain date, for instance airplane tickets
and hotel rooms. Given the knowledge of level of supply and future
stochastic demand the price is set to get the optimal outcome, in
most applications maximal revenue. In the Short term-process appli-
cations are submitted over time from the deadline of the Annual train
timetabling process until the operating day. The Swedish Transport
Administration is obliged to answer an application as soon as possible
and at the latest 5 days after the application arrival. Dynamic pricing
also has a time aspect, as price is allowed to vary over time depend-
ing on what have been sold and what are expected to be sold in the
future. Supply and demand are key aspects of dynamic pricing. The
supply is the number of items left in store, i.e. the number of items
that is possible to sell. The demand is the number of items that will
be sold in the future given a specific price. By knowing the available
supply today and considering the future demand and the buyers’ will-
ingness to pay, the price is set so that the outcome is optimal. The
optimal outcome is in most applications revenue maximization, but
can be changed into something more suitable for the train timetabling
process. For instance, the lowest price such that all track capacity is
used. Dynamic pricing is described in Chapter 7.

To tie the process together in step 4, every year starts with an
evaluation of the previous timetabling process. The conclusions from
the evaluation are used in an initial analysis to next year’s process in
order to improve the timetabling process. An evaluation or analysis
could be which and how much track capacity that is offered on the
auctions such that important track capacity for the operators apply-
ing in the Short term-process is not sold. The market price for track
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capacity can also be analyzed to get the right price parameters in the
dynamic pricing.
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Chapter 3

About the thesis

The overall aim of this thesis is to contribute to a more efficient track
capacity utilization. The research considers two steps of the train
timetabling process described in Chapter 2.3. The first part of the
thesis investigates how track capacity can be allocated to publicly
subsidized traffic based on societal benefit when writing the Network
Statement. Mathematical methods and models are developed and
investigated that quantifies and computes the societal benefit of the
track capacity used by the publicly subsidized traffic. The second part
investigates how dynamic pricing on track capacity can be used and
implemented in order to estimate the societal benefit of a train in the
Short-term process. Mathematical models and methods are developed
and investigated that make it possible to use dynamic pricing on track
capacity. The mindset when performing the research is that the train
timetabling process should spur a more efficient use of the railway
network and that track capacity is allocated with respect to societal
benefit.

3.1 Problem description
In the train timetabling process, the track capacity for publicly sub-
sidized traffic is reserved early in the process, then the commercial
traffic competes on a market for the rest of the track capacity. The
reserved track capacity is a number of train paths that makes up
the train operations on the operator’s lines. When reserving track
capacity to publicly subsidized traffic, the societal benefit should be
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the guiding principle. The societal benefit depends on the number
of travelers and the time they want to travel. The waiting time for
a traveler depends on when the train departs, and the time a train
departs depends on the train timetable. There is a need for a method
that finds a train timetable and the number of departures where the
departure times are specified such that the train timetable provides
as large societal benefit of track capacity used by the publicly subsi-
dized traffic as possible. Waiting time is an important factor in the
societal benefit since the more departures the shorter waiting times
for the travelers, but also more costs for operating the trains.

Dynamic pricing is proposed to be used to allocate the commercial
traffic in the train timetabling process. When using dynamic pricing
on for instance airplane tickets, the supply and demand is known.
The supply is the number of tickets left to sell and the demand is the
number of tickets that is expected to be sold in the future. In the
train timetabling case, it is not clear how to interpret the supply and
demand. The Swedish train timetable is very heterogeneous, which
is a property that is not going to change since freight trains and
passenger trains use the same tracks. Thus, each track access request
will in some sense be unique, which makes it harder to calculate the
supply and demand in a transparent way. The supply and demand
in the train timetabling process need to be calculated such that this
variability is allowed.

3.2 Research questions
This thesis considers the following research questions:

Q1: How can the value of the track capacity for publicly subsidized
traffic be calculated and evaluated in terms of societal benefit
based on the passenger demand, the number of departures and
the departure times?

Q2: Can dynamic pricing be used on track capacity, and if so, how
can it be used? How can the available track capacity for a
track access request be calculated and quantified? How can
the demand for inhomogeneous track access requests, be made
commensurable into a demand for track capacity in a dynamic
pricing setting?

26



3.3. Methodology

Question Q1 is considered in Chapter 6 and question Q2 is considered
in Chapter 7.

3.3 Methodology
To reserve track capacity to publicly subsidized traffic, the value of the
publicly subsidized traffic is estimated by social cost-benefit analysis.
Social cost-benefit analysis is a method for assessing societal benefits
and costs of infrastructure investments and policies. By implement-
ing a social cost-benefit analysis on the train timetable, the societal
benefits and costs can be quantified. Thus, different train timetables
can be compared and the best possible train timetable chosen.

Optimization is a tool in almost all of the methods developed in
this thesis. The main purpose of optimization models is to maxi-
mize (or minimize) an objective given some constraints. In this the-
sis, the constraints describe the trains, the track access request and
the railway infrastructure. The railway infrastructure includes con-
straints for single and double tracks, train crossings and overtakings,
safety regulations and stopping at stations. When investigating train
timetables for the publicly subsidized traffic the objective is to mini-
mize the societal cost and when calculating the supply in the dynamic
pricing, the objective is to maximize the number of train paths.

3.4 Contributions
The contributions of this thesis are:

Chapter 6

• A formulation of an optimization model for computing a train
timetable that minimize the generalized cost and production
cost to be used when reserving track capacity to publicly sub-
sidized traffic.

• An adaption of the standard social cost-benefit analysis model
into a format that can be analyzed with a linear optimization
problem.

• A solution procedure for solving the optimization model that
minimizes the generalized cost and production cost.
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Chapter 7

• An adaption of the dynamic pricing process such that it can be
used for train timetabling in the Short-term process.

• A method that quantifies the available track capacity for a track
capacity request in the form of a track access request.

• A mathematical method for calculating the demand for track
capacity usable in standard dynamic pricing models, reflecting
the demand for inhomogeneous train paths.

Publications included in this thesis

• Railway timetabling based on Cost-Benefit Analysis, Victoria
Svedberg, Martin Aronsson, Martin Joborn, 19th EURO Work-
ing Group of Transportation Meeting, EWGT 2016, 5-7 Septem-
ber 2016, Turkey, Transport Research Procedia, Vol.22, p 345-
354.

• Dynamic pricing of track capacity, Victoria Svedberg, Martin
Aronsson, Martin Joborn, Jan Lundgren, 20th EURO Working
Group of Transportation Meeting, EWGT 2017, 4-6 September
2017, Hungary, Transport Research Procedia, Vol.27, p 704-711.

3.5 Thesis outline
The remainder of this thesis is organized as follows: Chapter 4 gives
a survey of optimization models for train timetabling. The differ-
ence between the time-based and event-based models are described
and it is discussed how these models are used in the literature. The
chapter concludes by motivating the choice of type of optimization
models used for this thesis. Chapter 5 provides an introduction to
social cost-benefit analysis and its applications. Chapter 6 explains
the limitations of social cost-benefit analysis when it is applied to
train timetables. A method is introduced that overcome these limi-
tations and that provides a value and a train timetable of the track
capacity used by the publicly subsidized traffic. The method is tested
on a part of the Swedish railway network and the input data is the
real timetable from 2014. Chapter 7 describes dynamic pricing and
the differences between the standard markets where dynamic pric-
ing is used and the train timetabling case. An explanation is given
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of how dynamic pricing can be implemented on the Swedish railway
such that a versatile train timetable is allowed while a more efficient
track capacity utilization is spurred. The dynamic pricing process is
tested on a part of the Swedish railway network by investigating if
the resulting price behaves as expected, i.e. if it is cheaper to apply
for a more flexible and homogeneous track access request. Chapter 8
concludes the results and sets a scope for the future research.
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Chapter 4

Optimization models for
train timetabling

The train timetabling problem is very complex and much research has
been focused on developing more tools for decision support. One basis
of such tools that is commonly used is mathematical optimization.
This chapter describes some different formulations of optimization
models for the train timetabling problem. Section 4.1 provides a
brief description of the background of using optimization on train
timetabling. The models are split into two categories, the time-based
models and the event-based models which are described in Section
4.2 and Section 4.3, respectively. The chapter is concluded with a
motivation of the choice of model used in this thesis in Section 4.4.

4.1 Background
The train timetabling problem aims at finding a train timetable where
all crossings and overtakings are planned according to the given safety
regulations. This is a feasible train timetable. The train timetabling
problem also aims at finding the best possible train timetable. The
best possible train timetable could be the train timetable causing the
lowest cost, highest benefit or deviates the least from some ideal train
timetable. In recent years, more political attention has been focused
on the railways due to the increasing interest in traveling and trans-
porting goods by train. Subsequently, there is more pressure on the
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infrastructure managers to find a timetable which can fit as many
train path applications as possible. Since the 90s, optimization has
become a common tool in research for solving the train timetabling
problem. The research aim is mostly to use optimization as a tool for
automation and decision support, but also as a tool to find a more
profound understanding of the properties of a train timetable or in-
frastructure. There is a number of published surveys of optimization
and train timetable planning, some of which are Cordeau et al., 1998,
who survey the models for train routing and timetabling, Lusby et al.,
2011, who investigate models for train routing, dispatching, platform-
ing and timetabling, Törnquist, 2006, who survey computer-based
decision support for train timetabling and dispatching, Cacchiani et
al., 2015, who examine models for non-periodic train timetabling and
platforming and S. S. Harrod, 2012, who examines models for train
timetabling.

The early models for train timetabling on the railways were very
simplified and only solved for small instances. Larger test cases were
impossible due to their complexity. Recent advances in computer
science have provided algorithms that increases the speed of calcula-
tions. Also, the demand growth for traveling by train during the last
decades has boosted the interest in faster and more efficient ways to
plan the timetable. Thus, the study of algorithmic approaches as a
decision support for train timetabling is a flourishing area.

In this chapter, the focus will be on optimization models used
for solving the train timetable problem for mixed traffic, i.e. the
models must allow train paths of different velocities, stopping stations
and arrival and departure stations. There are two main approaches
on how to model the timetabling problem in the literature; either
as an event based model or as an time based model. Both models
are explained in the following sections. The objective of the train
timetabling problem could be to maximize the robustness of the train
timetable, minimize the travel time for each train or minimize the
deviations from the requested train paths. From an infrastructure
manager’s point of view, the objective is to maximize the number of
train path applications that can fit into a feasible train timetable,
given the infrastructure. Therefore, this will be the objective in all
optimization models discussed in this chapter.
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4.2 Time-based timetabling models
In time-based models, the time axis is split into time intervals and the
trip is split into track segments. The state of the each track segment is
registered in each interval, where the state of a track segments is to be
either occupied or empty. For instance, at time 13:00 the occupancy of
every track segment in the railway network is investigated. The next
time could be 13:05, or after another suitable time interval. Figure
4.1 graphically illustrates the time-based model. In this figure, track
segment 4 is occupied by the train in the time interval 3 and thus,
the parameter b34 = 1. Likewise for the other track segments and
time intervals crossed by the train such as b11, b21, b22, etc. The
segments and time combinations which are never occupied by the
train equals to 0, such as b61, b63, b63, etc. The smaller the time
intervals are, the better from a timetabling point of view, since large
time intervals incurs a lot less granularity for conflict regulations.
Small time intervals come at a cost of a large complexity. Thus, the
time interval should be chosen by regarding this trade-off. The typical
time-based models are either using generated train paths or a multi-
commodity flow formulation and these are described in the following
sections.

4.2.1 Models using generated train paths
A generated path is a train path that is fixed and works as an input
to the optimization. The optimization does not alter the train path,
it only determines whether or not the train path is included in the
train timetable. The inclusion of the generated train path is repre-
sented by binary variables. To use generated train paths coupled with
a binary variable is a very fundamental optimization model for the
train timetabling problem. The concept is straight forward and easy
to understand, but does not allow any pragmatism in the conflict reg-
ulation. If there is a conflict between two or more train paths, only
one of them are included in the train timetable, even though there is
a possibility to fit more trains by altering the requested train paths.

Let G be the set of track segments, I be the set of time intervals
and T be the set of generated train paths. Further, introduce the
binary variable xr for each train r ∈ T such that

33



Chapter 4. Optimization models for train timetabling

Figure 4.1: An example of a time-based model of a railway
track. The time and trip are split into track segments and time
intervals, respectively. The bgi-parameters denote the state of
track segment g at time interval i.
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xr =

{
1, if train r is included in the train timetable,

0, otherwise.
(4.1)

Every train r has one specified train path. Let the train path for
train r be modeled as a matrix Br where rows are track segments and
columns are time intervals. The elements of Br is defined by

brgi =

{
1, if train r uses track segment g in the time interval i

0, otherwise.

(4.2)
The matrix for the example train path in Figure 4.1 would be

Br =



1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1


.

Note that the indexing for the rows is upwards in Figure 4.1 and
downwards in the matrix Br.

The model for maximizing the number of trains using generated
train paths is stated as

max
∑
r∈T

xr (4.3a)

s.t
∑
r∈T

brgixr ≤ 1 ∀g ∈ G, i ∈ I (4.3b)

xr ∈ {0, 1}, ∀r ∈ T (4.3c)

The constraint (4.3b) is the linking constraint that ensures that
there is only one train r on every track section g in the time interval
i. Brännlund et al., 1998 tested this model on a stretch of single
track in the middle of Sweden, where 26 trains (18 passenger and 8
freight) were scheduled using a time discretization of 1 minute. This
model was also used for investigating how auctions can be applied
to train paths in Nilsson, 1999. The objective is then to maximize
the sum of all bids on train paths. Recently this model has been
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further investigated in Gurdan and Kaeslin, 2015 where a solution
algorithm using a parallelized shortest path algorithm is developed.
The model is not suitable on larger test cases, or if a high level of
details is required, due to its complexity.

4.2.2 Multi-commodity flow formulation
The multi-commodity flow formulation finds an optimal flow of a
number of commodities, or goods, from an origin to a destination.
Let a train correspond to the flow of one commodity, i.e. one train
should travel from origin to destination. Then, the multi-commodity
flow problem can be altered into the flow of trains. Further, if the
multi-commodity flow problem is solved on the time-space graph and
includes conflict constraints between trains, then the solution to the
problem is a train timetable.

Let the set of trains be T . Further, let G be a set of all track
segments in the railway network and let I be a set of time intervals.
Every possible combination of (g, i) of track segments g ∈ G and time
intervals i ∈ I for train r ∈ T is a node in the time-space graph, which
is illustrated in Figure 4.2. With possible combinations means that
it should be reasonable for a train r to be at a segment g in the time
interval i. For instance, it is not possible for a train to be at an arrival
station before the departure time from the departure station, thus
these combinations are not included in the time-space graph. Let Vr
denote the set of nodes for train r and let Ar denote the set of arcs for
train r. Every arc a in the time-space graph represents a connection
between a track segment g and time i with an adjacent geographic
location g′ and time i′ for a train r. If the train is fast it might be
the case that i = i′ and if the train is slow, or has stopped it might
be the case that i 6= i′. Introduce source nodes gsource

r , ∀r ∈ T , and
connect these with arcs from the departure station and departure time
interval. Likewise, add sink nodes gsink

r , ∀r ∈ T , and connect them
with an arc to the terminal station and arrival time interval. Now we
have a time-space graph for the multi-commodity flow problem.

Introduce the binary variable xra defined as

xra =

{
1, if train r uses arc a

0, otherwise.
(4.4)

Let V =
⋃
r∈T Vr and A =

⋃
r∈T Ar. There is one aspect which is

not yet included. To get a feasible solution to the train timetabling
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Figure 4.2: The time-space graph for one train.

37



Chapter 4. Optimization models for train timetabling

problem there should not be any conflicts between trains. To achieve
this, identify subsets of the arc set A where the track capacity might
be congested and there might conflicts between different trains. Let
the set Γ denote the set of all conflicts. For every element γ ∈ Γ there
is a set of arcs Āγ where the track capacity might not be enough
for all trains and constraints for conflict regulation should be defined.
Let κγ denote the capacity of the conflict. The capacity of the conflict
is the number of trains that is allowed to enter the track segments in
the time periods in Āγ , this could for instance be the station capacity.
The purpose of κγ is to constrain the capacity utilization within Āγ
such that resulting train timetable can be conflict free. The multi-
commodity flow formulation is stated as

max
∑
r∈T

∑
a∈Ar

xra (4.5a)

s.t
∑

a∈δout(gsourcer )

xra ≤ 1, ∀r ∈ T (4.5b)

∑
a∈δin(gsinkr )

xra ≤ 1, ∀r ∈ T (4.5c)

∑
δout(v)

xra −
∑
δin(v)

xra = 0, ∀v ∈ Vr \ {gsource
r , gsink

r }, r ∈ T (4.5d)

∑
a∈Āγ

∑
r∈T

xra ≤ κγ ∀γ ∈ Γ (4.5e)

xra ∈ {0, 1} ∀a ∈ Ar, r ∈ T (4.5f)

The sets δin(v) and δout(v) are the incoming arcs to and the out-
going arcs from node v, respectively. Constraints (4.5b) and (4.5c)
enforce that the maximum capacity for the flow from the source node
and to the sink node is one. Constraint (4.5d) enforce the conserva-
tion of flow in all other nodes, i.e. if a train enters a node, it must also
leave it. The constraint (4.5e) enforce that the requests to operate
trains are never in conflicts.

The flow formulation in Equation (4.5) is the model used by
Schlechte, 2012. It is an extension to the arc-configuration problem
presented in Borndörfer and Schlechte, 2007a, where it is tested on
a macroscopic network between Hannover, Kassel and Fulda in Ger-
many consisting of 570 trains. Caprara et al., 2002 were among the
first to introduce a multi-commodity flow formulation and used it to
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determine a periodic train timetable on a single track line. S. Har-
rod, 2006 uses the multi-commodity flow formulation to investigate
the mixed speeds of trains on a single track line.

Various methods for solving the multi-commodity flow problem
applied to timetabling have been proposed. These methods have ei-
ther been focused on algorithms for solving the optimization model or
on simplifying the microscopic railway network into a detailed enough
macroscopic network. Some of the papers focusing on the solution al-
gorithm are Borndörfer and Schlechte, 2007b, who solves the problem
using a column generation approach and Borndörfer et al., 2013 and
Borndörfer et al., 2010b who develop a branch-and-bound heuristic,
named rapid branching, and test it on a part of the German railway
network between between Hannover, Kassel and Fulda. Other algo-
rithmic approaches for solving the problem is proposed by Fischer
and Schlechte, 2015, who apply a Lagrangean relaxation and then
uses bundle methods in an effort to decrease the solution time of the
problem. This approach is tested on a part of the German railway net-
work between Baden and Würtenberg. Also, Fischer et al., 2008 try
to perform two dual relaxations to speed up the solution time. They
also propose a third relaxation to overcome the limitation of one of
the previously tested dual relaxations. Caprara et al., 2006 also test
a Lagrangian heuristic and add constraints to consider planned main-
tenance on the tracks and already planned train paths (which is fixed
in time).

Cacchiani et al., 2010 use the multi-commodity flow formulation
to schedule extra freight trains on a railway network. The train paths
of the passenger trains are fixed, while the freight trains can deviate
from their requested train paths. The number of freight trains is
then maximized weighted on their profits. Cacchiani et al., 2008 also
test a column generation heuristic to solve the multi-commodity flow
formulation for a train timetable of mixed periodic and non-periodic
traffic.

To decrease the complexity, there have been research on how to
only include the important details of the railway network into the
time-space graph. This research is presented in Borndörfer et al.,
2010a and Borndörfer et al., 2011. They introduce a transformation
that takes the microscopic railway network, make a ”mesoscopic” net-
work with enough detail, solve the multi-commodity flow formulation,
and then aggregate the resulting train timetable onto the microscopic
railway network. This method is named the micro-macro transforma-
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tion. Borndörfer et al., 2014 test the micro-macro transformation and
the multi-commodity flow formulation on the Simplon railway corri-
dor that links Lausanne in Switzerland with Domodossola in Italy.

S. Harrod, 2011 suggests a modified multi-commodity flow for-
mulation using hypergraphs to make ease for a track capacity viola-
tion which may occur using the model in Equation (4.5). S. Harrod
and Schlechte, 2013 investigate and compare the use of the multi-
commodity flow formulation with and without hypergraphs for the
occurrence of the infrastructure violation.

The multi-commodity flow formulation has been used for numer-
ous applications. Within research conducted on auctions of train
paths, the multi-commodity model has been the most used train
timetabling model. Borndörfer et al., 2005 tests an auctioning ap-
proach for selling train paths. The multi-commodity flow formulation
in Equation (4.5) is expanded to include bundling of train paths in a
combinatorial auction. Thus, the model is expanded to handle prob-
lems where the buyers have a preference to buy all requested train
paths, which is called AND-constraints, or buy only one of a set of
train paths, which is called XOR constraints. S. Harrod, 2013 also
experiments with an auction framework with the hypergraph multi-
commodity flow formulation.

4.3 Event-based timetabling models
Contrary to time-based timetabling, the event based model is tracking
the time of specific events instead of tracking the state of a system
at specific times. An event can in the timetabling case be the time
a train arrives to or departs from a station or track segment The
times are continuous in the event-based timetabling problem and not
discrete as in the time-based timetabling problem. Let T be a set of
train paths and let G be the set of geographic locations. A geographic
location is either a station or a track segment. The events are when
a train r departs or passes a station or a track segment. The variable
tr,g denotes when the event starts, i.e. when the train r ∈ T departs
or passes the station or track segment g.

The foundation of the event-based timetabling model is the job-
shop scheduling problem. This problem deals with assigning jobs
with different processing times to resources of different processing
power. Each job must be performed on the machines in a specific
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order. In the case of train paths, the machine corresponds to a track
segment or station, the process corresponds to the trains traversing
a track segment or station (the machines) and the processing time,
i.e. the time it takes to perform a job on a machine, corresponds to
the time it takes for a train to traverse a track segment or station.
Figure 4.3 illustrates the job-shop scheduling problem applied to train
timetables. The yellow train performs a job on the machines in the
sequence s1, l1, s2, l2, s3, l3, s4, l4, s5, l5, s6, l6, s7, l7, s8, the blue
train performs a job on the machines in the sequence s3, l3, s4, l4, s5,
l5, s6, l6, s7, l7, s8 and the red train performs a job on the machines
in the sequence s8, l7, s7, l6, s6, l5, s5, l4, s4, l3, s3, l2, s2, l1, s1. The
continuous variable tr,g denotes the time train r starts its process on
the station or track segment g. All processes together form a train
timetable.

Let S denote the set of stations and L denote the set of track
segments, then G = S ∪ L. The subset Gr ⊂ G is the geographic
locations passed by train r. The requested departure time from or
passing time for g for r ∈ T is τr,g for all g ∈ Gr. Further, let ωr,g be
the minimal time a train spends on g, i.e. ωr,l is the minimum travel
time on track segment l ∈ L for train r and ωr,s is the minimum dwell
time for train r on station s. Let ∆rr′

g be the safety margin for train r
when meeting train r′ on the geographic location g. Let g+ 1 denote
the next geographic location after g ∈ Gr on the trip of the train path
r. Introduce the binary variable yrr

′
g such that

yrr
′

g =

{
1, if train r leaves the geographic location g before train r′,

0, otherwise

(4.6)
The job-shop scheduling formulation of the train timetabling prob-

lem is stated as
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Figure 4.3: A train timetable seen as a job-shop scheduling
problem. The squares are processes assigned to different ma-
chines (or track segments) and the width of the square are the
processing times.
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min
∑
r∈T

∑
g∈Gr

|tr,g − τr,g| (4.7a)

s.t. tr,g + ωrg ≤ tr,g+1, ∀r ∈ T , g ∈ Gr
(4.7b)

tr′,g − tr,g ≥ ∆rr′
g yrr

′
g −M(1− yrr′g ), ∀r, r′ ∈ T , g ∈ Gr ∩ Gr′

(4.7c)

tr,g − tr′,g ≥ ∆rr′
g (1− yrr′g )−Myrr

′
g , ∀r, r′ ∈ T , g ∈ Gr ∩ Gr′

(4.7d)

tr,g ≥ 0, yrr
′

g ∈ {0, 1} ∀r, r′ ∈ T , g ∈ Gr ∩ Gr′
(4.7e)

The constant M is very large and imposes big-M constraints. The
objective in (4.7a) aims at minimizing the deviation from the re-
quested timetable. Constraint (4.7b) ensures that the departure time
from geographic location g + 1 is after the departure time from geo-
graphic location g plus the minimum dwell time or travel time at that
geographic location. Constraints (4.7c) and (4.7d) impose interaction
constraints for conflict regulations between trains.

One of the first articles discussing an event-based model is Jo-
vanović and Harker, 1991 where the short-term scheduling of freight
traffic is considered. By modifying existing schedules and adding or
deleting trains the reliability and the capacity utilization of the train
timetable was investigated. Another early paper using the job-shop
scheduling formulation is Oliveira and Smith, 2000, where conflicts
were regulated by re-timing trains and the problem was solved using
an heuristic algorithm. Higgins et al., 1997 developed the job-shop
scheduling approach into a decision support for train dispatching on
a single line. Carey and Lockwood, 1995 solved the job-shop schedul-
ing approach on double tracks and propose solution heuristics for the
problem. Lately, the constraints for maintenance work have been
included in the job-shop scheduling model by Forsgren et al., 2013
where the best possible traffic flow through the maintenance work
is found. Mannino, 2011 describe two optimization models for train
dispatching which have been put into operation based on the job-
shop scheduling approach. Gestrelius et al., 2015 use the job-shop
scheduling approach to find a daily train timetable using delivery
commitments on the Swedish railways.
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4.4 Conclusion and need for this research
To use optimization on the train timetabling problem is a key tool in
this thesis. The optimization model should be fit for use on real train
timetabling instances. The model using the generated train paths de-
crease the complexity of the problem but gives a very coarse model of
the railway network, with no refined conflict regulation and no adap-
tion of the train paths. The multi-commodity flow formulation gives
a more accurate model of a railway network, has a good conflict regu-
lation and also solves the routing problem, but has a large complexity
and long running times or cannot be solved for large problems. The
event-based model gives an accurate model of the railway network
and a refined conflict regulation, but the routes of the trains need to
be defined beforehand.

The choice of model depend on the question posed. If there is a
number of fixed train paths and you want to minimize the number
of unscheduled train paths, the optimization model using generated
train paths is a good choice. If the question instead includes the
routing problem, the multi-commodity flow formulation is a good op-
tion. The event-based model is good for solving the train timetabling
problem if the routes of the trains are fixed.

In this thesis the delivery commitments are essential, thus the
time-related aspects of train paths must be allowed to change in the
optimization and thus the model for pre-generated train paths is ruled
out. The multi-commodity flow and job-shop scheduling approach are
both convenient choices of optimization model.

When it comes to the calculation of the societal benefit of track
capacity, the important factors for the societal benefit are the travel
time, waiting time and the time a passenger has to leave early to
catch a train. To find these values the exact times of the train paths
are needed. To find these times can result in complications when
using the multi-commodity flow formulation, which only consist of
binary variables indicating a time interval a train passes a geographic
location. This time indications defined by the binary variable can
not be used in the optimization, but can be coarsely estimated using
constraints. This is though not a good option since a lot of extra con-
straints would need to be defined and maximizing the societal benefit
would have a high complexity. Compared to the multi-commodity
flow formulation, the event-based model has an inherent time indica-
tion in the continuous variable tr,g. Thus, the event-based model are

44



4.4. Conclusion and need for this research

much simpler to handle when calculating the societal benefit.
To calculate the supply and demand for an application for delivery

commitments using the multi-commodity flow formulation would be
very straight forward. The railway network is already divided into
time intervals and track segments. If the variable xra equals 0, its
corresponding track segment is empty. Thus, the number of empty
track segments and times could be the supply. The demand is then
the possibility that a train will drive on that track segment in the
future. There is one complication with this approach and that is that
the partition of track segment and time intervals would favor a specific
train speed, which was exactly what the supply and demand should
not do. The question of how long a track segment or time interval
is not easily decided and all trains driving in a speed less than the
length of a time interval would thus have a larger supply than faster
trains, since slower trains would occupy two time intervals on one
track segment. The question would then be how long the length of a
time interval would be, which is hard to determine in a transparent
way. Using the event-based model the versatility of the Swedish train
timetable can be considered when calculating the supply and demand.
For instance the homogeneity of the tracks is easier to consider, which
means that if a fast train causes problems to slower trains, then that
can be mirrored as a lower supply. This is not the case of the multi-
commodity flow formulation.

The advantages with the event-based model are larger than with
the multi-commodity flow formulation. Thus, the choice of train
timetabling model that best suits the purpose of this thesis is the
event-based model.
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Chapter 5

An introduction to social
cost-benefit analysis

This chapter provides an introduction to social cost-benefit analysis.
A more thorough description of social cost-benefit analysis is given in
Layard and Glaiser, 1994. In this thesis, social cost-benefit analysis
will be applied to train timetables when allocating track capacity to
publicly-subsidized traffic.

Social cost-benefit analysis is a method used to investigate the
societal benefits and costs of infrastructure investments and policies.
Some effects of an investment or policy are hard to foresee and com-
pare. Social cost-benefit analysis translates the probable effects of
the investment or policy into a monetary unit. Thus, the effects of an
investment or policy become measurable and suggestions of invest-
ments or policies become easier to compare. The steps of the social
cost-benefit analysis are:

1 Find a couple of alternatives to a possible infrastructure invest-
ment or policy. The number of suggestions can be one. These
alternatives are called the do-something alternative. Also define
the base case, i.e. today’s infrastructure or policy. This is the
do-nothing alternative.

2 Estimate the societal benefits and costs for each of the devel-
opment alternatives and compare them to the societal benefits
and costs of the comparison alternative. This comparison is a
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measure of the value of the improvements of the development
alternative.

3 Divide the value of the improvement of a development alter-
native and the investment cost of this alternative. Rank the
development alternatives based on the quotient and choose the
alternatives with the highest ranking (these alternatives cause
the largest net-improvement relative to the investment cost),
such that the total investment cost keeps to the budget.

The procedure as a whole is straight-forward. Step 2 of the social
cost-benefit analysis is though a bit more intricate. What are the
societal benefits and costs of an investment or policy? This chapter
describes Step 2 of the social cost-benefit analysis in more detail.

When a person takes a decision of, for instance, which hotel to stay
in, he will find the price to be an important factor. Other important
factors can be cleanliness, proximity to the city center or if breakfast is
included. The latter factors are non-monetary factors. Non-monetary
factors are important for peoples decisions and should be included
in a decision analysis, even though there are no monetary values.
The purpose of social cost-benefit analysis is to base a decision of an
investment or policy on the monetary and non-monetary factors which
affect the society. Infrastructure investments or policies are made by
the government and their funds should benefit the society as good as
possible. Non-monetary costs are a large part of the societal benefit.
The life of people is to large extent affected by the travel times to work
or waiting times for trains, and many other non-monetary factors. If
an investment or policy affects the society negatively, by for instance
radically increasing the travel times, or if the benefit of an investment
is small in comparison to the investment cost, then that investment
is bad use of governmental funding. Thus, the non-monetary factors
are equally important to include in an analysis as monetary costs.

While the monetary costs inflicted on the society is measurable,
the non-monetary factors of a large investment or policy are harder
to consider. Economists have developed methods to assign a mon-
etary value to the non-monetary factors, and thus translating the
non-monetary factors into costs with a monetary unit.

The social cost-benefit analysis considers the consumers in the
generalized costs, the producers in the production costs and the society
in the externalities and tax revenues. The generalized cost, or the
costs inflicted on the consumers, is the monetary and non-monetary
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costs every person consider in their choices. Consider a person who
chooses between taking the car or the bus to a destination. This
person might regard factors like travel time, waiting time for the bus,
travel comfort, fuel price for the car and ticket price for the bus when
making his decision. When the costs affecting the decision are defined,
total cost for each choice, bus or car, is calculated. Since everyone
is assumed to minimize his or her costs, a person chooses the option
yielding the lowest cost. The total generalized cost is then found by
adding all generalized costs for every person utilizing bus or car to
travel to the destination.

The production costs are the monetary costs inflicted on the pro-
ducers. This also includes producer revenues. Producer revenues
are interesting since producers eventually generate money and might
also be subsidized by the government. Hence, production costs are
included in the social cost-benefit analysis.

The externalities are the consequences of the investment or pol-
icy that affect non-consumers. When a traveler chooses between the
bus or car, it is assumed that the traveler rarely considers how the
decision impact others. For instance, choosing the car causes more
emissions, but people value travel time and comfort more than caus-
ing less emissions. Emissions are an important factor to include in a
social cost-benefit analysis due to the extent it affect others. Thus,
these consequences are estimated to costs and can include the cost of
emissions, road congestion, wear and tear and accidents. Wear and
tear are externalities because the maintenance of the road is in most
cases funded by taxes and accidents are also to some extent paid for
by health care.

The tax revenues are also included in the analysis. These tax rev-
enues are from, for instance, tax on fares, fuel, VAT or congestion
charges. These revenues are extra costs for the consumers and pro-
ducers, but since tax should be generated back to the society it is
included as a revenue.

When the generalized cost, production cost externalities and tax
revenues for each suggestion are calculated, it is possible to estimate
the change in demand after that the suggested investigated infras-
tructure investment or policy has been implemented. Suppose that
the infrastructure investment concerns a road. If the travel time will
decrease due to the investment, the number of people traveling on
that road with bus or car will increase. Assume that the general-
ized cost is g0 for each person traveling on that road by car before
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the investment. After the investment the generalized cost is g1. Let
D(g) be the number of travelers when the generalized cost for a ser-
vice is g. The function D(g) is illustrated in Figure 5.1. Further,
let D0 = D(g0) and D1 = D(g1). If g0 > g1, then D0 ≤ D1. The
travelers, who were traveling before the investment to a generalized
cost g0, will still travel, but to a lower generalized cost g1. They will
”save” g0−g1 monetary units. There are also D1−D0 new travelers,
who did not travel before the investment but are traveling after. The
new travelers are also ”saving” a generalized cost due to the infras-
tructure investment. The consumer surplus CS is the total value of
the generalized cost-savings of all existing and new travelers and is
mathematically expressed as

CS =

∫ g1

g0
D(g)dg. (5.1)

The demand is often locally approximated as a linear function,
which makes it possible to simplify the mathematical model for CS in
Equation (5.1). This simplification is called the rule-of-half estimation
and is mathematically formulated as

CS = D0(g0 − g1) +
1

2
(D1 −D0)(g0 − g1). (5.2)

Figure 5.1 shows the relationship between the demand and the
generalized cost as a linear function for simplicity. In reality the de-
mand is rarely linear. If the existing D0 travelers all had a generalized
cost savings of g0 − g1, the consumer surplus for the old travelers is
D0(g0 − g1), which is the first term in the rule-of-half estimation in
Equation (5.2). The number of new travelers is D1−D0. Since the de-
mand D(g) was estimated to be a linear function, the generalized cost
savings from the new travelers can be estimated as the mean value,
i.e. 1

2(g0−g1). The total consumer surplus for new travelers can then
be calculated as 1

2(D1 − D0)(g0 − g1), which is the second term in
the rule-of-half estimation in Equation 5.2. The consumer surplus for
the infrastructure investment is the sum of the consumer surplus for
the old travelers, which used the road before the investment, and new
travelers, which is the blue area in Figure 5.1.

Let e(∆D) be a function describing the cost of externalities if
the change in number of passengers is ∆D, i.e. ∆D = D1 − D0.
Further, let t(∆D) be a function describing the tax revenues for a
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Figure 5.1: The relationship between the demand, generalized
cost and consumer surplus. The solid line is the demand D(g)
as function of the generalized cost g. The consumer surplus is
the cost ”savings” made for all old and new travelers, which is
the gray area.

∆D change in number of passengers. The sum of the changes in cost
of externalities and the tax revenues is

ET = −e(∆D) + t(∆D). (5.3)

The producer surplus is the difference between the production rev-
enue and cost, i.e. it is the production profits. The producer surplus
is used to calculate the change in producer surplus, which is the differ-
ence in the producer surplus before and after the investment. Assume
that all affected companies can in total make a profit of P 0 before the
investment and P 1 after. The change in producer surplus PS is de-
fined to be

PS = P 0 − P 1. (5.4)

51



Chapter 5. An introduction to social cost-benefit analysis

Let K be the sum of the consumer surplus, the cost of externali-
ties, tax revenues and the producer surplus, i.e.

K = CS + ET + PS. (5.5)

The sum K is the societal value of the investigated alternatives.
This societal value is calculated for the do-nothing alternative and
all do-something alternatives when comparing infrastructure invest-
ments and policies. The alternative with the largest sum of consumer
surplus, producer surplus, externalities and tax revenues is the alter-
native causing the most savings for both consumers and producers in
the social cost-benefit perspective. By dividing this sum with the in-
vestment cost, a measure is obtained that considers both the societal
value and the investment cost. If the quotient is high in comparison
to other alternatives, this alternative is regarded to be a good choice.
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Chapter 6

Social cost-benefit
analysis for allocation of
track capacity

In Section 3.1, the problem with reserving track capacity to the pub-
licly subsidized traffic was discussed. The reserved track capacity
regards a number of train departures and how these departures are
distributed over the day, and not complete train timetables. The
train timetables are defined later in the train timetabling process.
The aim is that the resulting reserved track capacity for the publicly
subsidized traffic is optimal in terms of societal benefit.

The societal benefit is estimated using social cost-benefit analysis.
The social cost-benefit analysis is inherently dependent on when the
trains depart since the departure times are an input. We want the
departure times as an output. Thus, we need to find a method that
can transparently calculate the societal benefit of publicly subsidized
traffic that outputs how the departures should be distributed in time
instead of having them as an input. Further, many departures are
good for the travelers and causes a low generalized cost, but many
departures are expensive to maintain and cause a larger production
cost. A method that balance the generalized cost and production
cost and provides an optimal number of departures is needed. In this
chapter we introduce a method that calculates the societal benefit of a
train timetable with unknown train paths. The outcome is a number
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of departures and how these departures are optimally distributed over
the day. Previous work in this field is given in Section 6.1. The time
dependent factors in the social cost-benefit analysis that is dependent
on when the trains depart is first discussed in Section 6.2 and how
to consider these factors in the societal benefit is discussed in Section
6.3. Section 6.4 provides an optimization model, outputting the dis-
tribution of the departures that maximizes the societal benefit, where
the number of departures is kept fixed. Section 6.5 shows some ex-
periments on a part of the Swedish railway network and Section 6.6
discusses the results.

6.1 Previous work - Societal benefit of a
train timetable

Many articles have been published were the societal benefit and pas-
senger welfare are maximized in some of the planning problems in
the railway industry, such as routing and line planning, and then
integrated with the train timetabling. Schmidt and Schöbel, 2015
and Espinosa-Aranda et al., 2015 consider the societal benefit of a
timetable by integrating the passenger behavior into the routing and
train timetabling model. The passenger behavior depends on the train
timetable and a good timetable depends on how the passengers are
using the railway network. By integrating these models, the passenger
benefits are maximized in terms of travel and transfer times. To con-
sider a dynamic passenger demand, Schmidt and Schöbel, 2015 and
Espinosa-Aranda et al., 2015 use a two-phase problem. In Schmidt
and Schöbel, 2015, the first phase determines the routes for the pas-
sengers, i.e. how they travel and changes lines along the railway
network. In the second phase, the railway lines are adjusted and the
train timetables are planned. In Espinosa-Aranda et al., 2015 the first
phase finds the supply of railway services and the second phase finds
the passenger demand considering attributes like travel time and seat
availability.

Niu and Zhou, 2013 and Niu et al., 2015 address the passenger
welfare by minimizing the waiting time at stations. The developed
model aims at synchronizing the passenger loading time windows and
the train arrival and departure times at each station during congested
conditions. Barrena et al., 2014 also focus on minimizing the pas-
senger waiting time during a dynamic demand and a non-periodic
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timetable. An event-driven model is presented in Wang et al., 2015,
where the events are departure time, arrival time, passenger arrival
rate changes, the routing of passengers at transit stations and the
passenger behavior is included.

All the previously described models are considering the passenger
welfare, but do not provide a model calculating the generalized cost
and production cost in a social cost-benefit framework. Robenek et
al., 2016 model the timetabling problem and integrates a route choice
model while including the passengers point of view in terms of a
generalized cost for a problem using fixed train paths, which can be
used in a social cost-benefit analysis. However, production cost is not
considered and the purpose is not to investigate the track utilization
before knowing anything about the train timetable. In this thesis
an optimization model is developed that considers the producer and
generalized cost to output a train timetable for the regional train
operations before knowing the operations of other trains.

6.2 The time dependent factors in the so-
cial cost-benefit analysis

The societal benefit of train paths can be estimated using social cost-
benefit analysis. The value obtained by social cost-benefit analysis is
different depending on how many passengers that travel with the train
departures, how long time the passengers have to travel with or wait
for that train and the number of train paths. This section describes
how the value of train paths in a social cost-benefit analysis can de-
pend on the train paths and why this is a problem when investigating
the reserved track capacity for publicly subsidized traffic.

The number of passengers on the train paths is included in the
social cost-benefit analysis. This is most clearly seen as the D(g)-
factor in the expression for the consumer surplus in Equation (5.1).
In this thesis, we assume that the passengers choose between different
departures, for instance whether to take the train at 10 o’clock or
twenty past 10. Important factors in the decision of waiting for a train
or leaving earlier to catch a train is when the passengers actually want
to travel. There is thus a time aspect in the number of passengers
and the D(g)-factor is also a distribution of passengers over the day.

Assume that the passenger distribution over the day is uniform,
i.e. that irregardless of time on the day there is always the same num-
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(a) (b) (c)

Figure 6.1: Assigning societal cost to three different timeta-
bles. (a) The societal cost of the timetable is c1. (b) The societal
cost of the timetable is c2. (c) The societal cost of the timetable
is c3.

ber of passengers that wish to travel. Further, assume for simplicity
that the only important factors in the generalized cost is the waiting
time for a train or the difference between the time a passenger has to
leave earlier to catch a train and the desired departure time. These
two factors are called the schedule delay. There is also a production
cost for operating the trains. Consider the case when an infrastruc-
ture planner investigates whether the train timetable on a region line
should consist of two or three train paths. The train paths in Fig-
ure 6.1a and Figure 6.1b are used to calculate the consumer surplus.
Assume that value c1 is obtained for the train paths in Figure 6.1a
and c2 for the train paths in Figure 6.1b. Since the passenger dis-
tribution is uniform, and the train paths depart uniformly over time,
the schedule delay is less for the option with three departures, i.e.
c1 > c2. If the train paths in Figure 6.1c was used instead, the soci-
etal value obtained by social cost-benefit analysis would be different.
Assume that the train paths in Figure 6.1c obtain the value c3. Since
the passenger distribution was uniform, there are less passengers that
benefits from a more frequent service in Figure 6.1c than in Figure
6.1b. The case is that c3 > c2. The extra production cost for having
three train paths instead of two might also cause the case that c3 > c1.
Thus, the result is that c3 > c1 > c2, which gives poor guidance when
deciding whether two or three train paths should be planned on the
line. Thus, the societal cost is dependent on the distribution of train
paths.

This time dependency of the social cost-benefit analysis causes
problem when reserving track capacity for publicly subsidized traffic.
We want the social cost-benefit analysis to output the best possible
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train paths instead of using them as an input. We propose that this
should be done by minimizing the societal cost using optimization
and use the resulting minimized societal cost to compare the number
of departures and use the resulting train paths when scheduling the
publicly subsidized traffic.

6.3 Defining the societal cost
There are four factors in the social cost-benefit analysis: the gener-
alized cost, the production cost, the cost of externalities and the tax
revenues. We assume that everyone choose to travel by train indepen-
dently of other modes of transport. Thus, the total passenger demand
for traveling by train in one day is fixed. Since the total number of
passengers that travel in a day is fixed in the do-nothing and do-
something case, the cost of externalities will be zero. Further, since
the transfer of money has already been done by the passenger when
paying of a travel card from the publicly subsidized train provider,
we do not include fares and taxes on fares. Thus, we do not need
to consider tax revenues either. In other words, the sum of cost for
externalities and tax revenues, ET from Equation (5.3) equals 0 in
all cases. Thus, the only included factors are the generalized cost and
the production cost. In this section these costs are described with a
mathematical expression.

6.3.1 Total generalized cost
The total generalized cost is the sum of the generalized cost for all
passengers. The generalized cost was previously defined to be the
sum of all monetary and non-monetary costs a traveler considered
in a decision. In the train timetabling case, the decision is which
train departures to travel with. The generalized cost for passengers
traveling on the publicly subsidized traffic is the sum of the costs
for schedule delay, which is waiting time and leaving-early time, and
travel time. The waiting time is the difference in time between the
desired departure time and a later departure, i.e. the time a passenger
has to wait for a train. The leave-early time is the difference in time
between the desired departure time and departure time for an earlier
departure.

Let the set T consist of trains that operates the regional or com-
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Figure 6.2: The cost of schedule delay for a person desiring to
travel at time s and choosing the departure at time tr,i.

muter network, i.e. the publicly subsidized traffic. The set O con-
tains all possible pairs (i, j) of origins i and destinations j where the
trains in T stop for passenger exchange. Furthermore, define the set
T (i,j) ⊆ T to contain all trains which stops for passenger exchange
first at station i and later stop at station j.

Let the variable dr,i,j denote the travel time with train r from
the origin i to the destination j and let the variable tr,i denote the
departure time from geographic location i for train r. Let α be the
monetary value of travel time per time unit, β be the value of waiting
time per time unit and γ be the value of leaving-early time per time
unit. The generalized cost for the travel time between station i and
j is then defined as αdr,i,j . The cost of schedule delay for a person
desiring to depart at time s is defined as max

{
β(tr,i − s), γ(s− tr,i)

}
and is illustrated in Figure 6.2. The generalized cost for a person
desiring to travel between stations i and j at time s and chooses train
r is then given by

gr,i,j(s) = αdr,i,j + max
{
β(tr,i − s), γ(s− tr,i)

}
. (6.1)

Note that dr,i,j and tr,i depends on the train paths and will be vari-
ables in the optimization model, since the train timetable is not
known. Figure 6.3 illustrates the generalized cost gr,i,j(s) for two
different train r and r′.

A traveler choosing between a set of train departures, has a gen-
eralized cost for each travel option. Everyone aims at minimizing
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Figure 6.3: The generalized cost gr,i,j(s) for a departure with
train r (green) and train r′ (red) for different desired departure
time s.

their generalized cost and thus a traveler chooses the option with the
smallest generalized cost. The generalized cost of a single traveler
desiring to depart at time s, is therefore given by

ĝ(s) = min
r∈T (i,j)

{gr,i,j(s)}. (6.2)

Figure 6.4 illustrates the generalized cost ĝ(s) for the same two trains
r and r′, that were illustrated in Figure 6.3.

To calculate the total generalized cost, the sum of the generalized
cost for all persons traveling with the subsidized traffic on the network
over the day is required, i.e. between 0 AM until 24 PM. Let Ni,j(s)
be the number of travelers desiring to travel between i to j at time
s. Then, the total generalized cost can be expressed as

G =
∑

(i,j)∈O

∫ 24

0
Ni,j(s)ĝ(s)ds. (6.3)
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Figure 6.4: The generalized cost ĝ(s) for the departure choice
of a person desiring to travel at time s. The cost is illustrated
for two trains r and r′.

6.3.2 Production cost
In the standard case when social cost-benefit analysis is used to in-
vestigate infrastructure investments or policies, the production cost
is the sum of all monetary costs inflicted on the producers due to that
infrastructure investment or policy. In this case, the monetary cost
inflicted on a producer is the operating cost, i.e. the cost of running
trains according to a train timetable. In the timetabling case there
are three types of cost which may increase or decrease due to the
infrastructure investment or policy. These are the cost for the train
travel time, the cost for the passenger wear and tear and the cost for
the passenger travel distance. The cost for train travel time includes
costs related to train drivers and other staff on the train. The cost
for passenger wear and tear regards costs for cleaning and repairing
the interior of a train. The cost for passenger travel distance regards
costs such as fuel cost. To state the expression for the production
cost, some definitions need to be made.

Let θ1 be the cost of one traveled time unit for a train. Define the
variable ar as the travel time tor train r from the departure station to
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the terminal station. The cost for train travel time can be expressed
as

θ1

∑
r∈T

ar. (6.4)

The cost for passenger wear and tear is a bit more intricate. Let
ur(s) be an indicator function according to

ur(s) =


1, if a person desiring to travel between i and j

at time s chooses train r,

0, otherwise.

(6.5)

The travel time for this person can be defined by

ξi,j(s) =
∑

r∈T (i,j)

dr,i,jur(s). (6.6)

The function ξi,j(s) is simply stated the travel time for the train
chosen by the passengers desiring to travel at time s. Let θ2 be the
passenger cost per traveled time unit. The cost for passenger wear
and tear over a day (from 0 AM until 24 PM) is then expressed as

θ2

∑
(i,j)∈O

∫ 24

0
Ni,j(s)ξi,j(s)ds (6.7)

Lastly, let θ3 be the cost per passengers’ traveled distance unit.
Further, let Li,j be the travel distance between i and j. Since the
routes are fixed in this case, Li,j is a constant. The cost for passenger
travel distance is expressed as

θ3

∑
(i,j)∈O

Li,j

∫ 24

0
Ni,j(s)ds. (6.8)

The production cost, i.e. the sum of the cost for travel time, pas-
senger wear and tear and travel distance, is defined by the expression

P = θ1

∑
r∈T

ar + θ2

∑
(i,j)∈O

∫ 24

0
Ni,j(s)ξi,j(s)ds (6.9)

+θ3

∑
(i,j)∈O

Li,j

∫ 24

0
Ni,j(s)ds.

61



Chapter 6. Social cost-benefit analysis for allocation of track capacity

6.4 The optimization model
Given the total generalized cost G from Equation (6.3) and the pro-
duction cost P from Equation (6.9), we will now formulate an opti-
mization model that minimizes these costs, given the railway infras-
tructure, the passenger distribution over the day Ni,j(s), the speci-
fied number of train operating on each line and where and how long
time they should stop along the line. The outputs are an objective
value, which can be used in the social cost-benefit analysis, and a
train timetable, on which the train timetable of the publicly subsi-
dized traffic can be based. The outline of the optimization model is
specified as

(OPT )

{
min G+ P

s.t. Infrastructure constraints
(6.10)

The variables in the expression for G and P are

• tr,i - The departure time for train r ∈ T (i,j) from station i, such
that i is contained in an origin-destination pair (i, j) ∈ O.

• dr,i,j - The travel time for train r ∈ T (i,j) from station i to j,
such that (i, j) ∈ O.

• ar - The total travel time from departure station to terminal
station for train r ∈ T (i,j).

The optimization problem (OPT) is a very complex non-linear
problem. For instance, the passenger demand distribution Ni,j(s)
is not necessarily a functional expression and it is not possible to
solve (OPT) on real size problems using existing solvers. We will
therefore make a linear approximation of the objective function and
reformulating it into a mixed integer linear programming problem.
The infrastructure constraints are defined in the Appendix A. These
constraints include conflict regulation between trains, safety regula-
tions and train speed limits. The generalized cost is calculated for
every origin-destination pair which causes the complexity to grow
fast. This high complexity should be considered in the linear approx-
imation, such that the number of constraints and variables are kept
low.

The linear approximation is described in three steps. These are:
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1 Linearizing the passenger demand distribution Ni,j(s), which is
included in both the consumer and production cost.

2 Linearizing the total generalized cost, in particular ĝ(s) from
Equation (6.2).

3 Linearizing the production cost, in particular ξi,j(s) from Equa-
tion (6.6).

The subsequent section describes the linear approximation made in
each step.

6.4.1 Linearizing the passenger demand function
The passenger demand function Ni,j(s) does not necessarily have a
functional expression. Thus, the integral over Ni,j(s) is also not a
functional expression. To linearize these types of expressions, they
are approximated by a Riemann sum. The Riemann sum is an ap-
proximation method for estimating the value of the Riemann integral.
The Riemann integral is the method most commonly used when in-
tegrating functions and works for real-valued integrals. Let Q be a
partition of the real line from a to b, such that ∀q ∈ Q there exists
a real number sq such that a = s0 < s1 < · · · < sq < · · · < s|Q| = b.
The Riemann sum approximation of the integral from a to b of a
function f(s) can then be defined as

∫ b

a
f(s)ds ≈

|Q|∑
q=1

f(s∗q)(sq − sq−1), where sq−1 ≤ s∗q ≤ sq. (6.11)

Let f(s) be the function multiplied by Ni,j(s). The partition Q is
defined such that 0 = s0 < s1 < · · · < s|Q| = 24, since the integral is
over a day. Let s∗q be equal to the mean of the time interval [sq−1, sq].
Using the Riemann sum in Equation (6.11) gives the approximation

∫ 24

0
Ni,j(s)f(s)ds ≈

|Q|∑
q=1

f(s∗q)

∫ sq

sq−1

Ni,j(s)ds, where s∗q =
sq + sq−1

2

(6.12)
Figure 6.5 illustrates the approximation graphically.
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(a)

(b)

Figure 6.5: Simplifying a multiplication using the Riemann
sum. (a) The factors before applying the Riemann sum. (b)
The factors after applying the Riemann sum.
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The integral
∫ sq
sq−1

Ni,j(s)ds can easily be calculated, since the

function Ni,j(s) is known. In the following sections, we will use Ni,j,q

to denote
∫ sq
sq−1

Ni,j(s)ds. In the case of generalized cost and pro-

duction cost for timetables, using Ni,j,q can be interpreted that we
assume that everyone desiring to travel in the time period [sq, sq+1]
have the same generalized cost and also causes the producer the same
costs. This is not far from the reality, since Ni,j(s) often is expressed
as a piecewise constant function.

The approximated expression for the total generalized cost from
Equation (6.3) is

G =
∑

(i,j)∈O

∑
q∈Q

Ni,j,q ĝ(s∗q), (6.13)

where ĝ is defined by the expression in Equation (6.2).
Using the approximation on the production cost leads to the ex-

pression

P = θ1

∑
r∈T

ar + θ2

∑
(i,j)∈O

∑
q∈Q

Ni,j,qξi,j(s
∗
q) + θ3

∑
(i,j)∈O

Li,j
∑
q∈Q

Ni,j,q

(6.14)
The objective function in Equation (6.10) can now be approximated
to the sum of the expressions in Equation (6.13) and (6.14). However,
the expression for G and P is still not linear. Section 6.4.2 gives a
description of the constraints used to linearize the total generalized
cost G and Section 6.4.3 gives a description of the constraints used
to linearize the production cost P . Section 6.4.4 provides a summary
consisting of the objective and the constraints for the total generalized
cost and production cost and Section 6.4.5 gives a solution heuristics
and some implementation details.

6.4.2 Total generalized cost constraints
The expression for the total generalized cost in Equation (6.13) is not
linear. We have to linearize the expression for the generalized cost
for a specific train gr(s

∗
q) and the min-function.

The solid line in Figure 6.6 illustrates the graph of gr,i,j(s). The
graph is clearly not linear. The two lines are the two components
of gr,i,j(s) defined in Equation (6.1), i.e. αdr,i,j + β(tr,i − s) and
αdr,i,j + γ(s− tr,i), that follows from the max-function in gr,i,j(s). To
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Figure 6.6: The lines are the two components of gr,i,j(s). The
solid line is the graph of gr,i,j(s).

linearize the expression for gr,i,j(s) introduce the continuous variable
hi,j,q,r and the constraints

hi,j,q,r ≥ αdr,i,j + β(tr,i − s∗q) ∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O
(6.15)

hi,j,q,r ≥ αdr,i,j + γ(s∗q − tr,i) ∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O
(6.16)

Thus, the impact on the generalized cost for each train is split into
two linear functions which correspond to the components of gr(s).

There is now a collection of hi,j,q,r variables, which provides the
result

gr,i,j(s
∗
q) = hi,j,q,r. (6.17)

This result makes it possible to rewrite ĝ(s) into

ĝ(s) = min
r∈T (i,j)

{hi,j,q,r}. (6.18)
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Figure 6.7: The blue and red line is the generalized cost for
train r and the yellow and green line is the generalized cost for
train r′. The solid line is the graph of ĝ(s) for the combination
of the two trains.

Figure 6.7 illustrates the graph of this expression. The blue and red
lines are the minimal value of hi,j,q,r, i.e. the generalized cost, for the
train r and the yellow and green lines are the minimal value of hi,j,q,r′

for the train r′. The constraint in Equation (6.15) corresponds to the
blue and yellow line and the constraint in Equation (6.16) corresponds
to the red and green line. The solid lines are the value of ĝ(s).

There is still a non-linearity due to the min-function in the expres-
sion for ĝ(s) in Equation (6.18). To linearize the min-function, start
by investigating the two consecutive departures in Figure 6.7. The
travel time is approximately the same for all trains, since the publicly
subsidized traffic is generally operated by similar train units. Thus,
the travel time is usually not the largest factor for a traveler, instead
the traveler chooses between the closest earlier or later departure than
the desired departure time. A traveler with a desired departure time
s∗q from station i chooses between the earlier departure with train r
or the later departure with train r′. Thus, the traveler is facing the
problem min{hi,j,q,r, hi,j,q,r′}. Introduce the binary variable zi,j,q,r,r′
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defined as

zi,j,q,r,r′ =

{
1, hi,j,q,r ≤ hi,j,q,r′ ,
0, hi,j,q,r > hi,j,q,r′ .

(6.19)

Also, introduce the continuous variable oi,j,q and the constraints
below.

oi,j,q ≥ hi,j,q,r −Mzi,j,q,r,r′ ∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O
(6.20)

oi,j,q ≥ hi,j,q,r′ −M(1− zi,j,q,r,r′) ∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O.
(6.21)

where M is a large number.
To ensure that dr,i,j provides the travel time between station i

and j for train r, introduce the constraint

dr,i,j = tr,j − tr,i ∀(i, j) ∈ O, r ∈ T (i,j). (6.22)

The variables oi,j,q together with the binary variable zi,j,q,r,r′ and
the constraints in Equation (6.15), (6.16), (6.20), (6.21) and (6.22)
then becomes a linear model for ĝ(s∗q). Figure 6.8 illustrates this
expression. The total generalized cost part of the objective from
Equation 6.13 can be rewritten as

G =
∑

(i,j)∈O

∑
q∈Q

Ni,j,qoi,j,q (6.23)

which is now a linear function.
This, from a computational point of view, more attractive function

have been obtained by adding many new variables and constraints.
The complexity of the problem have been moved from the expression
of the total generalized cost to the large number of constraints and
variables, both continuous and integer. To speed up the solution time,
we need to preprocess the optimization model and remove as many
variables and constraints as possible. To do this, the domains are
used, which are introduced in Appendix A.1. The domains are time
restriction on the allowed departure time from, arrival time to and
passing time for the stations and track segments. This restrictions is
set on all train paths. Figure 6.9 illustrates the domains. The domains
are introduced to decrease the complexity. For instance, in Figure 6.9
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Figure 6.8: Graph of ĝ(s). The value at s∗q is sought after.

none of the train path interact, so there are no need for any inter-
action constraints between trains. Interaction constraints are only
introduced on overlapping domains. Thus, the number of variables
and constraints can be reduced. Let the time interval [lmin

r,i , l
max
r,i ]

denote the time restriction on the departure time tr,i of train r from
a station i. Thus, for the two consecutive departures r and r′, it is
only necessary to look at the cost for waiting time of the later depar-
ture r′ for travelers with a desired departure time in the time interval
[lmin
r,i , l

max
r′,i ]. Travelers with a desired departure time earlier than lmin

r,i

will not choose departure r′ and travelers with a desired departure
later than lmax

r′,i do not have a cost for waiting time because they will
not wait for the departure r′. Similarly, it is only necessary to look
at the cost for leaving early time for departure r for travelers in the
time interval [lmin

r,i , l
max
r′,i ]. Travelers with a desired departure time ear-

lier than lmin
r,i will not leave early to catch departure r and travelers

with a desired departure later than lmax
r′,i will not choose departure

r. Thus, there is a large number of unnecessary constraints defined
in Equation (6.20) and (6.21). Constraints (6.15) and (6.16) can be
rewritten into
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Figure 6.9: The blue lines are train paths and the blue par-
allelograms are the domains. The train paths have to be inside
the domains.

hi,j,q,r ≥ αdr,i,j + β(tr,i − lmax
r,i ) + β(lmax

r′,i − s∗q),

∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O (6.24)

hi,j,q,r ≥ αdr,i,j + γ(lmin
r,i − ti,r′) + γ(s∗q − lmin

r,i ),

∀q ∈ Q, r ∈ T (i,j), (i, j) ∈ O (6.25)

where the terms β(lmax
r′,i − s∗q) and γ(s∗q − lmin

r,i ) are constants. Let the

subset Qr,r′ denote all q ∈ Q such that s∗q ∈ [lmin
r,i , l

max
r′,i ]. By redefining

the constraints in Equation (6.20) and (6.21) and the constraint in
Equation (6.24) and (6.25) into

hi,j,q,r ≥ αdr,i,j + β(tr,i − lmax
r,i ),

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ (6.26)

hi,j,q,r′ ≥ αdr′,i,j + γ(lmin
r,i − ti,r′),

∀(i, j) ∈ O, r′ ∈ T (i,j), q ∈ Qr,r′ (6.27)

oi,j,q ≥ hi,j,q,r + β(lmax
r′,i − s∗q)zi,j,q,r,r′ ,

∀(i, j) ∈ O, ∀r ∈ T (i,j), q ∈ Qr,r′ (6.28)

oi,j,q ≥ hi,j,q,r′ + γ(s∗q − lmin
r,i )(1− zi,j,q,r,r′),

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ . (6.29)
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yields a model with far less variables.

6.4.3 Production cost constraints
The approximated production cost function in Equation (6.14), has
three components. The cost for train travel time, cost for passenger
wear and tear and cost for passenger travel distance. The cost for
train travel time is already a linear expression. The ar variable needs
to be constrained such that is expresses the train travel time, which
is the largest travel time between an origin and destination pair. This
is constrained as

ar ≥ dr,i,j ∀(i, j) ∈ O (6.30)

Similarly to the generalized cost ĝ(s), the ξi,j(s) in the cost for
passenger wear and tear from Equation (6.14) depends on which train
the travelers choose. It is assumed that the trains are traveling in a
similar speed, i.e.

dr,i,j ≈ dr′,i,j , ∀r′ ∈ T (i,j) (6.31)

Thus, it is unlikely that the travel speed becomes a significant factor
for a travelers decision. Since dr,i,j is almost constant over the trains,
α in the constraints in Equation (6.26) and (6.27) can be altered into
α+ θ2, according to

hi,j,q,r ≥ (α+ θ2)dr,i,j + β(tr,i − lmax
r,i ),

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ (6.32)

hi,j,q,r′ ≥ (α+ θ2)dr′,i,j + γ(lmin
r,i − ti,r′),

∀(i, j) ∈ O, r′ ∈ T (i,j), q ∈ Qr,r′ . (6.33)

Thus, the production cost of wear and tear is added in the gener-
alized cost. This modification is a small loss in accuracy, since the
production cost of passenger wear and tear becomes a part of the
choice of train for the passengers. This is clearly not the actual case
but since the travel speed rarely vary a lot on the model this simplifi-
cation is valid. In cases where trains traveling in different speed this
modification would not be applicable.
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The cost of passenger travel distance in Equation (6.14) is con-
stant. The term is,

θ3

∑
(i,j)∈O

Li,j
∑
q∈Q

Ni,j,q (6.34)

The production cost function can be expressed at the expense
that the constraints in Equation (6.32) and (6.33) are added. The
linearized expression for the production cost is

P = θ1

∑
r∈T

ar + θ3

∑
(i,j)∈O

Li,j
∑
q∈Q

Ni,j,q (6.35)

Note that the term for passenger wear and tear are added in the
generalized cost via the constraints in Equation (6.32) and (6.33)
instead.

6.4.4 Summary: Objective and costs constraints
Apart from the infrastructure and travel constraints presented in Ap-
pendix A, the optimization model becomes

min
∑

(i,j)∈O

∑
q∈Q

Ni,j,qoi,j,q + θ1

∑
r∈T

ar + θ3

∑
(i,j)∈O

Li,j
∑
q∈Q

Ni,j,q (6.36)

hi,j,q,r ≥ αdr,i,j + β(tr,i − lmax
r,i ),

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ (6.37a)

hi,j,q,r′ ≥ αdr′,i,j + γ(lmin
r,i − tr′,i),

∀(i, j) ∈ O, r′ ∈ T (i,j), q ∈ Qr,r′ (6.37b)

oi,j,q ≥ hi,j,q,r + β(lmax
r′,i − s∗q)zi,j,q,r,r′ ,

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ (6.37c)

oi,j,q ≥ hi,j,q,r′ + γ(s∗q − lmin
r,i )(1− zi,j,q,r,r′),

∀(i, j) ∈ O, r ∈ T (i,j), q ∈ Qr,r′ . (6.37d)
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dr,i,j = tr,j − tr,i, ∀(i, j) ∈ O, r ∈ T (i,j) (6.37e)

ar ≥ dr,i,j ∀(i, j) ∈ O, r ∈ T (i,j) (6.37f)

oi,j,q ∈ [0,∞), ∀(ij) ∈ O, q ∈ Q (6.37g)

hi,j,q,r ∈ [0,∞), ∀(ij) ∈ O, q ∈ Qrr′ , r, r′ ∈ T (i,j) (6.37h)

dr,i,j ∈ [0,∞), ∀r ∈ T (i,j), (i, j) ∈ O (6.37i)

ar ∈ [0,∞), ∀r ∈ T (i,j) (6.37j)

tr,i ∈ [0,∞), ∀r ∈ T (i,j), (i, j) ∈ O (6.37k)

zi,j,q,r,r′ ∈ {0, 1}, ∀(ij) ∈ O, q ∈ Qrr′ , r, r′ ∈ T (i,j) (6.37l)

The objective in Equation (6.36) is the sum of the expression
for the total generalized cost in Equation (6.23) and the production
cost in Equation (6.35). The constraints on the hi,j,q,r variables in
Equation (6.37a) and (6.37b) are the constraints in Equation (6.26)
and (6.27). The constraints in the oi,j,q variables in Equation (6.37c)
and (6.37d) are the constraints in Equation (6.28) and (6.29). The
constraint on the travel time dr,i,j in Equation (6.37e) corresponds
to the constraint in Equation (6.22). The constrains on the ar vari-
able in Equation (6.37f) corresponds to the constraint in Equation
(6.30). Equation (6.37g)-(6.37l) enforce non-negativity on the con-
tinuous variables oi,j,q, hi,j,q,r, dr,i,j and ar, while Equation (6.37l)
enforces that zi,j,q,r,r′ are binary variables.

6.4.5 Solution procedure
The mixed integer linear problem that outputs a distribution of train
paths in time for the publicly subsidized traffic is solved with CPLEX.
For a traffic network case of realistic size, the optimization model will
contain many variables and constraints. If the time axis is divided
into time intervals of 15 minutes the entire day consists of 96 time
intervals, for every departure on every origin-destination pair. For
every time interval and origin-destination pair there are at least two
constraints and at least three variables (oi,j,q, hi,j,q,r and zi,j,q,r,r′).
This results in a very large number of constraints and variables and
this number should be further reduced.

Section 6.4.2 described the domains, that were introduced to de-
crease the number of constraints and variables in the optimization
model. The domains decrease the solution time, but causes a prob-
lem to minimize the consumer and production costs. The domains
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are centered around the initial train paths. Thus, the domains have
to encompass both the initial value and the optimal train paths to
get the right solution. The train paths are very interdependent and
it is hard to find an initial value of the train paths that are proven
to be close enough to the optimal solution. To remedy this problem,
we use a heuristic approach. First, we set initial train paths and de-
fine the domains based on these train paths with an appropriate size.
The optimization problem is solved, and the resulting train paths be-
comes initial train paths in the next iteration and the domains and
optimization model are reformulated and solved again. If the optimal
train paths vary more than x minutes from the initial solution, then
the optimal is not yet found.

The solution procedure now becomes:

1 Set initial train paths.

2 Define the domain of each train path.

3 Formulate the optimization model (OPT ) for minimizing the
consumer and production costs including the infrastructure con-
straints and domains.

4 Solve the optimization problem. If no train path diverges more
than x minutes from the initial value, stop. Otherwise, go to
step 5.

5 Set the resulting train paths as the initial value for the train
paths and go to step 2.

By updating the domains in each iteration, their time intervals do
not constrict the problem into an erroneous optimal solution. Thus,
this heuristic algorithm ensures that the optimal solution is a local
optimal solution.

6.5 Experiments and results
The purpose of the optimization model is to obtain a train timetable
which can be used to investigate the track utilization of regional
trains using social cost-benefit analysis. We solve the model for a
given set of train departures. To illustrate the solution procedure,
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Figure 6.10: Map over the investigated network. Orange sta-
tions are stations where the trains can stop for passenger ex-
change.

we have investigated the trains operated by the regional train opera-
tor Östgötatrafiken. Östgötatrafiken operates the regional trains be-
tween Motala, Boxholm, Linköping and Norrköping and also stops at
the stations Skänninge, Mjölby, Mantorp, Vikingstad, Linghem and
Kimstad. The lines in the data are between Norrköping and Boxholm
and between Motala and Mjölby. Figure 6.10 shows the map over the
railway network. The network consists of double tracks. We do not
include travelers that change trains in Mjölby, since we do not have
the data of these transfers. Thus, the number of origin-destination
pairs is 62.

To investigate the social cost-benefit analysis model we will in-
vestigate how the optimal objective value behaves with decreasing
number of departures between Mjölby, Skänninge and Motala. In the
timetable from 2014, there are 21 trains operating the traffic between
Motala, Skänninge and Mjölby. The data for how many passengers
that travel between the stations on the lines and when they travel
are provided by Östgötatrafiken. The data consists of the number
of travelers each hour, at which station they start their trip and in
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which direction they are traveling. Thus, we do not have the pas-
senger data for the origin-destination pairs but only the origin for all
trips. A simple estimation of the passenger distribution over time
between the origin-destination pairs, the parameter Ni,j,q, is made by
assuming that the people starting the trip in the morning are also
returning in the evening and that most passengers want to travel to
the closest large city. Since there is no data of passengers changing
trains we excluded the possibility of making transfers from the model.
The value of the parameters α, β, γ, θ1, θ2 and θ3 are taken from
ASEK, which is the guidelines for social cost-benefit analysis at the
Swedish Transport Administration. The domains are set to one hour
and the traveled distance Li,j is based on values given by the Swedish
Transport Administration. The length of the time intervals for the
partition Q of the day were 15 minutes. In total 10 iterations of the
solution heuristic are performed where the maximal execution time
for each iteration is 30 minutes. The optimal objective value from
the last iteration differs with less than 1% from the optimal objective
value from the penultimate iteration.

Figure 6.11 shows the objective value, i.e. the total generalized
cost and production cost for the regional trains, before (which is the
train timetable for 2014) and after the optimization. It is hard to
conclude anything about the best track capacity utilization from the
total generalized cost and the production cost before optimization in
Figure 6.11 since the line clearly fluctuates. These fluctuations disap-
pear from the total cost after the optimization. Thus, there is a large
difference between the total cost before and after the optimization,
which speaks for the optimization method explained in this chapter
as a good proposal. Figure 6.12 shows the production cost on the
line, the total generalized cost on the line and the total cost on the
line.

6.6 Discussion
The result from Section 6.5, where the optimization method was
tested on the regional traffic, shows that this model can be used to get
an optimal train timetable from the sum of the total generalized and
production costs. The sum of the total generalized and production
cost does no longer fluctuate with the number of trains operating the
lines and it is easier to see which number of train departures on the
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Figure 6.11: The total cost before and after the optimization.
The blue line is the total cost based on the initial train paths
of the train timetable and the red line is the total cost after
minimizing the total cost.

line that is optimal in terms of societal benefit, which was desired.
Thus, it is also possible to use the optimization model to investigate
the number of trains that minimize the societal costs of the publicly
subsidized traffic on a line.

There are limitations of the optimization model, which is that it
can only be used on timetables where the regional traffic has almost
the same travel time between a pair of stations. That means that it
cannot be used to investigate regional traffic where the train timeta-
bles have for instance skip-stops. This can be solved by adding further
constraints and variables to the optimization model. The model does
not include a cost for congestion on the trains, which is an important
factor in a societal analysis. This means that there are no capacity
restrictions on a train and the trains are able to fit an infinite number
of passengers, which is not the case in reality. In real life, there is
a restriction when a train is full which raises the demand for extra
departures. Thus, the a societal cost for congestion on a train and a
maximum number of passengers on a train should be implemented.
Extra costs should be added already when seating is not available for
all passengers. Further, the results in this section do not consider
elasticities of passenger distribution for altering the number of depar-
tures. These elasticities are though more of a discussion of how the
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Figure 6.12: The costs for different number of train paths on
the line. The blue line is the total cost for the line, i.e. the
total generalized cost plus the production cost. The red line is
the total generalized cost on the line and the yellow line is the
production cost on the line.

passenger demand curve would change for increasing or decreasing
number of trains on the regional lines and are easy to implement in
the model. Thus, this discussion have not been considered as a part
of this thesis.

The optimization model has a large complexity, which makes the
solution times very long. Some decomposition techniques have been
unsuccessfully tested. If the model would be extended in the future,
investigations in how to decrease the complexity and the solution time
are recommended.
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Chapter 7

Dynamic pricing of train
timetables

When you buy an airplane ticket today, the airline operator calculates
the number of unsold seats, i.e. the supply. The operator also know
how the demand for that trip is distributed over time depending on
the price for the airplane ticket. Thus, based on this supply and
demand, the airline operator calculates a price on the ticket that
maximizes their revenues. For each new query to buy a ticket, a
price is set given the current supply and the knowledge of the future
demand. This is known as dynamic pricing and this pricing method
is increasingly common today. The customer can choose to buy the
ticket at the set price, travel with another flight operator or to stay
at home. Since this is done for each new query, the price varies in
time. For instance, plane tickets are usually much more expensive
a week before departure than half a year before the departure. In
this chapter, we will investigate how dynamic pricing can be used to
price track capacity. Section 7.1 describes the limitations of the Short
term-process today and the benefit of using dynamic pricing. Section
7.2 explains the standard dynamic pricing case and discusses some
discrepancies between the standard case and the railway case. Section
7.3 and Section 7.4 introduces models for calculating the supply and
demand for track capacity, to be used in dynamic pricing on the
railway case. Section 7.5 shows some results from using the models for
supply and demand and discusses how dynamic pricing will provide a
more effective utilization of the track capacity. Section 7.6 concludes
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and discusses the results.

7.1 Track capacity utilization for short term
planning

In the Short term-process, train path applications are not allowed to
change any train paths already included in the train timetable. This
causes an inefficient track capacity utilization. For instance, some
train path applications can be included to a cost of longer waiting
times at stations where no stops are requested. Figure 7.1 illustrates
such a case. There, interactions between many trains cause many
delays. Also, the waiting time for the red delivery commitment is
ineffective for the operator, that firstly have to pay salaries to the
staff on that train and secondly will have a transport which will arrive
later than requested.

The track capacity allocation can be more effective using dynamic
pricing, which is illustrated in Figure 7.2. The crosses and dotted lines
in Figure 7.2a represent delivery commitments that will be applied
for with some statistical probability, called the future delivery com-
mitments. We assume that the future demand is forecasted already
in the beginning of the Short term-process, so that the planner knows
how much track capacity he probably would sell and partly works as
a placeholders that drives up the price. Assume first that the black
delivery commitment in Figure 7.2b is a delivery commitment appli-
cation and that it earlier correspond to a future delivery commitment
(yellow line). All requests for the delivery commitment in the fu-
ture demand (i.e. the two remaining yellow delivery commitments),
can be satisfied even if the black delivery commitment application
would be included in the train timetable. We say that the black de-
livery commitment does not interfere with any delivery commitment
in the future demand. A price is set, in this case 100SEK, and if
the operator wants to pay the price, the black delivery commitment
application becomes a part of the train timetable. Later, the blue de-
livery commitment is applied for and it also corresponded to a yellow
line earlier. Figure 7.2c illustrates this delivery commitment appli-
cation. The blue delivery commitment application needs to adapt
to the black delivery commitment that previously was included in
the train timetable. Further, the blue delivery commitment appli-
cation interfere with the remaining yellow delivery commitment in
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(a) (b)

(c) (d)

Figure 7.1: A possible case in the Short term-process. The
crosses represent delivery commitments and the line in corre-
sponding color is a train path fulfilling the delivery commitment.
(a) The black delivery commitment is applied for. (b) The blue
delivery commitment is applied for and accepted. (c) The red
delivery commitment is applied for, but cannot be fulfilled. (d)
The red delivery commitment is altered and applied for.

81



Chapter 7. Dynamic pricing of train timetables

the future demand. Since only one of these delivery commitments
can be included in the train timetable, we would like to grant the
operator with the highest willingness to pay the right to enter the
train timetable. We assume that we know what the operators have
paid earlier years for that track capacity, using statistical methods.
Thus, a price is set based on what the operators previously have paid
for the yellow delivery commitments. The operator applying for the
blue delivery commitment has to match that price. If the operator
does not want to pay that price, he can alter his delivery commit-
ment application. In Figure 7.2d, the operator has postponed the
delivery commitment to a later time. This delivery commitment does
not interfere with the yellow delivery commitment and can receive
a lower price of 80SEK. If the price is payed and the blue delivery
commitments is included in the train timetable. In Figure 7.2e, some
time has passed and the red delivery commitment is applied for and
does not interfere with neither the delivery commitments in the train
timetable nor any future demand. The resulting train timetable is
more efficient than the train timetable in the case in Figure 7.1 with-
out dynamic pricing. Not more than two trains interact at a station,
which decreases the possibility of delays and the waiting times at sta-
tions are not as long. Further, if it would have been very important
for the operator applying for the blue delivery commitment in Figure
7.2c to have exactly that delivery commitment, he could have paid
the price. Thus, operators can apply for delivery commitments that
use a lot of track capacity if they are willing to pay the higher price
that is incurred with the inefficient use. This price is set based on
the available track capacity, the future demand and the willingness
to pay for this future demand.

7.2 The dynamic pricing process
Dynamic pricing has an inherent time aspect and considers both past,
current and future buyers which makes it suitable for the Short-term
process. Section 7.2.1 describes the standard case for dynamic pricing.
Section 7.2.2 compares the standard dynamic pricing case with the
railway case. Section 7.2.3 provides a literature review of dynamic
pricing of track capacity.
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(a) (b)

(c) (d)

(e)

Figure 7.2: An illustration of dynamic pricing on the Short
term-process. The track capacity applied for is the same as in
Figure 7.1. The yellow crosses and dotted lines correspond to
expected future delivery commitments. Crosses and solid lines
in other colors than yellow are delivery commitments included in
the train timetable. (a) The Short term-process starts by inves-
tigating the expected future demand for delivery commitments.
(b) The black delivery commitment is applied and paid for and
subsequently included in the train timetable. (c) The blue de-
livery commitment is applied for but the price is too high for the
operator. Thus, the delivery commitment is not included in the
train timetable. (d) The blue delivery commitment is altered.
(e) The red delivery commitment is applied for.
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7.2.1 Dynamic pricing in the standard case
The use of dynamic pricing has become increasingly common in ap-
plication areas such as ticket pricing, parking fees and retail. Today,
most hotel rooms and airplane tickets are priced using dynamic pric-
ing. Dynamic pricing is used for products which have a limited supply
and lose their value after a certain time. For instance, no one wants
to buy an airplane ticket for a plane that has already taken off, hence
all unsold airplane tickets have lost their value. The key feature of
dynamic pricing is that the price is set in the current time period
considering the current supply, the future expected demand and the
current and future buyers’ willingness-to-pay (estimated to the mar-
ket price in the previous years’ price). Thus, if you expect that there
will be some people willing to buy the product later at a higher price,
you want to have some objects left for them to buy. The price is
updated in each time period in order to adapt to new information
about the market with the aim to maximize the profit.

Gallego and Ryzin, 1994 presented a model for dynamic pricing
which has been further developed in a number of articles such as Zhao
and Zheng, 2000 and Levina et al., 2009. We use a simplification of
this dynamic pricing model stated in Talluri and Ryzin, 2004. The
time between the start and stop of the selling period is split into T
time periods. The selling starts in time period 0 and stops in the time
period T , which in the airplane ticket case is the time period when the
plane departs. Let xt be a state variable representing the remaining
supply in period t, defined as the number of airplane tickets left to be
sold in period t to T , where t = 0, . . . , T . Let pt be the price in period
t = 0, . . . , T and let Dt be the stochastic demand, i.e. the number of
objects that will be sold in period t. In the dynamic pricing problem,
pt is the decision variable and it affects the demand. If the price
is high, the expected demand will be lower and less objects will be
sold. If the stochastic demand is lower than the supply, i.e. Dt < xt,
then Dt objects are sold. In the opposite case, when the stochastic
demand is larger than the supply, xt < Dt, then only xt objects can
be sold. Thus, the number of objects that are sold in period t are
min(xt, Dt). The expected future revenue from time period t to T
given the remaining supply xt is then
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Vt(xt) = max
pt

(
E
[
pt ·min(xt, Dt)

]
+ Vt+1

(
xt+1

))
. (7.1)

where xt+1 = xt −min(xt, Dt) (7.2)

The function E[·] is the expected value function. The remaining
supply xt is updated reflecting the actual sales and the price pt is
calculated for each new customer, which means that Equation (7.2)
is calculated for each new customer. The value of pt that is set in
time period t, will affect the expected revenue in time period t+ 1 to
T . The problem is solved recursively, which means that the problem
for time period t is solved given the outcome in time period t + 1,
by solving the problem for all possible supplies in the future (hence
using the future demand) and then take these values and solve the
problem for today.

7.2.2 Dynamic pricing in the train timetabling case
This section will describe why we cannot directly use the same model
for calculating supply and demand that is used in the standard case
also on the railway case. In dynamic pricing, it is crucial to define the
supply and demand, i.e. the initial state variable x0 and the stochastic
demand Dt. The standard way of seeing supply and demand cannot
be applied to the train timetabling case, since the train timetabling
case is very different from the standard case of dynamic pricing. In
the standard dynamic pricing, the objects for sale are all comparable.
For instance, in the airplane ticket case, you buy the right to a seat
on the plane. Figure 7.3 shows the airplane case, where the seats and
level of service are equal for all tickets (we disregard the differences
between the first-class and economic tickets, since this price is set
using other techniques). It is easy to see the supply, which is the
number of unsold seats, and the demand is for buying one of more
seats.

In the train timetabling case, operators rarely requests the same
train paths. The train timetable is similar to Figure 7.4a. The trains
operating the train paths are also usually traveling with different
speeds and stop at different stations. Thus, the operators request
different train paths. The question is, what can a seat on the air-
plane correspond to in this case? In the straightforward case of only
investigating the track capacity used by a delivery commitment re-
quest this would correspond to the airplane in Figure 7.4b.
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Figure 7.3: The objects for sale in dynamic pricing for airplane
case. The seats are considered as comparable. Picture from
Iflysun1.

In Figure 7.5, planned delivery commitments in the train timetable
are displayed together with a delivery commitment request. What is
the supply, the state variable x0 in Equation (7.1), of track capac-
ity for this delivery commitment request? How can the supply and
demand of all delivery commitments correspond to the airplane in
Figure 7.3? If a delivery commitment request would correspond to a
airplane seat, then train paths that are tricky to plan (such as train
paths with many planned stops) would be equalized to train paths
that are easy to planned (such as train paths that only need a time
for departure from the departure station and a time for the arrival to
the arrival station). This is clearly not fair, since they take different
amount of track capacity in the train timetable. Further, track ca-
pacity in the rush hours would be equally valued as track capacity in
the less densely operated times. Can this problem be solved by divid-
ing the train timetable into fixed slots based track sections and time
intervals and let these be sold? The train would thus have to pass the
track section within this time interval. If it is slow and cannot pass
the track section within the time interval, the operator will have to
buy two slots. This setting would still not solve the problem. Firstly,
it is not clear what the length of the time intervals should be. The
Swedish tracks contain very mixed traffic, with very variable speed.
Secondly, it is not fair. A faster long distance train might easily fit
on one slot (i.e. pass the track section within the time interval). A
slower freight train might have to buy two slots to fit into the train
timetable, which can become very costly for the railway freight busi-

1http://iflysun.com/wp-content/uploads/2016/05/alaska-airlines-seatmap.png

86



7.2. The dynamic pricing process

(a)

(b)

Figure 7.4: The difference between track capacity used by train
paths and airplane capacity. (a) A regular train timetable con-
sisting of different train paths. (b) The difference of the track
capacity used by the train paths illustrated as airplane seats.
The airplane seat map is very different from the regular seat
map in Figure 7.3
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Figure 7.5: The planned delivery commitments (black and
blue crosses and lines) and the delivery commitment request
(red crosses) in a train timetable.

ness. Thirdly, it is not a very efficient use of track capacity. Assume
that the time intervals were designed after a long-distance intercity
train. A high speed train can then easily fit into the time interval,
perhaps even leaving some residual time. This residual time can then
not be used by other operators, which is very inefficient. Thus, the
supply should consider the available track capacity (the track capac-
ity with the planned delivery commitments that is available for the
delivery commitment request).

In Figure 7.6, the future demand is displayed in relation to the
delivery commitment request. How should the future demand, the
stochastic variable Dt in Equation (7.1) for track capacity be mea-
sured? Can the future demand for track capacity correspond to an
airplane seat? In the airplane case, the future demand is the proba-
bility that 0, 1, ..., xt−1 or xt seats are bought in the time period t.
These probabilities are needed for every time period from 0 up to T ,
and gives information whether many or few airplane seats will be sold
before the departure. The demand is for the objects in the supply.
However, in the railway case the demand is not for the same delivery
commitments. It is rare that similar delivery commitments are ap-
plied for. The demand is instead for occupying some track sections in
specific times, for instance to occupy a congested track section dur-
ing a time interval in the rush hour. To split the track capacity into
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Figure 7.6: Delivery commitments that are applied for with
some probability in the future (yellow lines and crosses) and the
delivery commitment request (red crosses) in a train timetable.

slots, is not viable with the same reasoning as with the supply. In the
airplane case, buying one seat meant that the supply would contain
one seat less. In the train timetabling case, buying one new deliv-
ery commitment in the train timetable would not necessarily mean
that there are one less delivery commitment in the supply. Imagine
that an operator of long distance passenger trains hands in a delivery
commitment request. Assume that the infrastructure planner knows
the future demand, which is a freight train operator that will apply
for a delivery commitment on exactly the same track capacity. The
slower speed of the freight train will need a lot more track capacity,
than the passenger train. Assume instead that the future demand is
a high speed train that will apply for delivery commitments on the
same track capacity. The faster high speed train will require less track
capacity than the passenger train. Thus, the demand should reflect
the track utilization of the future demand.

To use the model for dynamic pricing in Equation (7.1) and (7.2)
on the train timetabling case we need to specify and interpret:

• x0 - the initial supply of track capacity for a delivery commit-
ment application,

• Dt - the stochastic demand.

We suggest that the supply should be defined as the number of
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train paths which can be planned on the infrastructure given the al-
ready planned delivery commitments, and that fulfills the current de-
livery commitment application. Each delivery commitment that can
be assumed to be applied for in the future is adjoined with a number.
This number is the number of train paths from the delivery com-
mitment request that fits into the same track capacity as the future
delivery commitments. The future demand is then the aggregated
demand for all of the future delivery commitments.

Figure 7.7 gives a graphic explanation of the supply and demand
in the train timetabling case. Figure 7.7a illustrates the supply. The
blue crosses correspond to two delivery commitments already in the
train timetable and the blue lines correspond to train paths that ful-
fills the delivery commitments. The red crosses correspond to the
delivery commitment request. The number of red lines corresponds
to the number of train paths that can be planned given the planned
delivery commitments. Figure 7.7b illustrates the demand. The yel-
low line and crosses represent a future delivery commitment, which is
a delivery commitment that will be applied for with some probability
in the future. When this future delivery commitment is added to the
train timetable, a number of train paths in the supply can no longer
be planned on the infrastructure, these are the red dashed lines. The
demand is defined by the number of dashed lines, i.e. train paths that
cannot be operated due to the future delivery commitment.

The supply and demand are calculated for each new delivery com-
mitment application. Thus, we have a time when the operators can
start to buy track capacity (the selling start), when the train departs
(the selling stop) and a time when the an operator applies for a de-
livery commitment, as illustrated Figure 7.8a. At the time when the
operator have applied for a delivery commitment, the supply of that
delivery commitment is calculated which is denoted x0. This provides
the information of the state of the train timetable today (congested or
empty) and is an input to the dynamic pricing process. Thus, there is
an individual supply x0 for each delivery commitment request which
works as an initial value as Figure 7.8b illustrates. The future de-
livery commitments are the same for every application. How much
the delivery commitment request affects the possibility to schedule
the future delivery commitment applications is different from request
to request. Thus, the stochastic variables Dt for all t = 0, . . . , T are
individual for every delivery commitment application and provides
information of how much of the track capacity used by the delivery
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(a) (b)

Figure 7.7: Investigating supply and demand from a delivery
commitment application (red) given the already planned deliv-
ery commitments (blue). The delivery commitments (X) enforce
a strict condition in the train paths. (a) The number of train
paths fulfilling the delivery commitment applications is calcu-
lated: the supply is six train paths. (b) The yellow train path is
a future train path. When including this train path, the dotted
red train paths can no longer be operated and are excluded from
the supply. The demand corresponds to the number of excluded
train paths and is thus three train paths.

commitment request, that can be sold in the future. Figure 7.8b
illustrates this.

7.2.3 Previous work - Dynamic pricing and track
capacity

Research within revenue management applied to railway capacity has
been conducted for the situation on North American railways. Gor-
man, 2015 provides an overview of this research. The terms on the
North American railways are different from the Swedish case. In
North America, there are private companies that owns the infras-
tructure. These companies can also operate the trains on the in-
frastructure. Thus, when the operators agree to a transport, they
themselves can operate the transport on their infrastructure. Thus,
the transport can be priced using dynamic pricing based on the rail
capacity used to conduct that transport. The rail capacity is in this
case seen as both train capacity (capacity available on the train) and
equipment capacity (railcars, containers, etc.). In the Swedish case
it is not possible to know the shipments on the trains. The shipment
contracts are regarded as company secrets and operators have a right,
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(a)

(b)

Figure 7.8: A timeline of the dynamic pricing process for one
delivery commitment request. (a) The timeline from the opera-
tors point of view. (b) The timeline from a mathematical point
of view.

protected by the Swedish law, to not be forced to give out this in-
formation. The only thing that can indicate the demand and value
of track capacity are the delivery commitment applications and the
operators willingness to pay for these. Thus, a price must be set on
the track capacity instead of the shipment.

7.3 Models for calculating the supply of
train paths

The supply of a delivery commitment request is defined to be the
number of train paths fulfilling the delivery commitment request given
the infrastructure and the already planned delivery commitments. In
this section we describe how the initial value of this state variable,
i.e. x0 in Equation (7.1) and (7.2), can be computed.

There are some factors to consider when computing the supply.
The type of the traffic is not the same through the whole railway
network. The parts of the railway network operated by regional or
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(a) (b)

Figure 7.9: The delivery commitment application (red) and
planned delivery commitment corresponding to a commuter
train (blue). (a) The number of train paths is investigated be-
tween stations A and C, the traffic between stations A and B
and between stations B and C are considered simultaneously.
(b) The supply is investigated between stations A and B and
between stations B and C separately.

commuter trains usually have more dense traffic than parts of the net-
work without both regional and commuter trains. Figure 7.9a shows
a commuter train operating between stations A and B. The supply
given existing delivery commitments, marked with the red crosses, is
8 train paths between A and C, but there is a possibility to fit more
train paths between B and C. Figure 7.9b shows, the supply between
station A and B plus B and C. Between A and B there are 8 train
paths in supply and between B and C there are 19 train paths in
supply. The infrastructure manager has to make sure that the price
on the train paths between A and C in Figure 7.9a equals the sum
of the prices between A and B and B and C in Figure 7.9b. If not,
the price is not transparent and operators will put effort to apply for
delivery commitments on different combination on track segments to
obtain lower prices. This accumulates to more work for the infras-
tructure manager, to find the price on all different combinations of
track segments, and for the operator to find the combination of track
segments resulting in the lowest price. Thus, to keep the process sim-
ple, track segments need to be predefined before the process starts
and the supply should be calculated on each track segment the de-
livery commitment application traverses, where a track segment is a
number of connected track sections with similar traffic.

The train path of a delivery commitment is always scheduled on
the available track capacity. To find the available track capacity for
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Figure 7.10: The available track capacity for a train path ap-
plication (red area) when the train timetable is constructed of
train paths (blue lines). The train paths are fixed in the train
timetable and cannot be changed.

(a) (b)

Figure 7.11: The available track capacity for the delivery com-
mitment (red area) can vary in size depending on the realization
of the already planned delivery commitments (blue lines and
crosses).

a train path, it is enough to just look at a realized train timetable.
Figure 7.10 illustrates the available track capacity for a train path ap-
plication. In this thesis, we work with delivery commitments instead,
which add complexity when finding the available track capacity. Since
only the delivery commitments are enforced and the train paths are no
longer fixed, the available track capacity for a delivery commitment
request can no longer be found by just looking at a train timetable.
Figure 7.11 illustrates this. Thus, to find the available track capacity,
the red area on Figure 7.11 needs to be maximized. When the avail-
able track capacity is known, it is an easy task to find the number of
train paths.

To conclude, the value of the supply x0 is found by performing
the following steps:
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1 Before the start of the dynamic pricing process, define track
segments where the type of the traffic is similar within each
segment. This segmentation of the railway network will be used
for all delivery commitment applications.

2 When receiving a delivery commitment application find the
available track capacity for this delivery commitment applica-
tion for each segment.

3 On the available track capacity, investigate the maximum num-
ber of train paths that can be planned on each track segment.

1. Define track segments
We divide the test cases only by looking at a map of the railway sys-
tem. Let L be the set of all track segments. Further, let G denote the
set of stations and track sections in the railway network. The stations
and track sections on segment l ∈ L is denoted Gl. These sets will be
used to compute the supply xt in the subsequent steps. In this thesis
we do not investigate how this segmentation should be done.

2. Find the available track capacity
To find the available track capacity for a delivery commitment re-
quest, given the already planned delivery commitments, we intro-
duce the concept of capacity corridors. A capacity corridor is defined
as some track capacity in time and space that is not occupied by
any train path from an already planned delivery commitment and on
which the train that should operate a delivery commitment request
can be planned. Figure 7.12 illustrates one such capacity corridor.
The red area is the size of the capacity corridors. We want to find
as large timetable space, i.e. corridors, as possible. This is done by
formulating an optimization problem. The idea is that the delivery
commitment application can be scheduled on the union of all capac-
ity corridors, which is the available track capacity for the delivery
commitment request.

Let C be the set of all capacity corridors and let Ld be the set of
all segments that is used by the train that should operate the deliv-
ery commitment request. The capacity corridor i ∈ C, is defined by
a time interval [hmin

i,g , h
max
i,g ], for every station or track section g ∈ Gl

for track segment l ∈ Ld, where hmin
i,g and hmax

i,g are continuous vari-
ables to be determined by the optimization model. As Figure 7.12
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Figure 7.12: A capacity corridor i between stations A and B,
defined by the time intervals [hmin

i,A , h
max
i,A ] and [hmin

i,B , h
max
i,B ] given

a requested delivery commitment (red crosses) and two already
planned delivery commitments (blue crosses and lines). The ca-
pacity corridor spans some track capacity in space and time in
the train timetable that is not occupied by other train paths.
The crosses are the delivery commitments and the capacity cor-
ridor must consider the red delivery commitments.

describes, there cannot be any train paths for other delivery commit-
ments in the time interval [hmin

i,g , h
max
i,g ] for all geographic locations g,

since the capacity corridors should be free of interactions with other
trains. Thus, the union of the capacity corridors is the available track
capacity for the delivery commitment application.

To ensure that hmin
i,g and hmax

i,g define a feasible a time interval, we
introduce the constraints

hmin
i,g ≤ hmax

i,g , ∀g ∈ Gl, l ∈ Ld, i ∈ C. (7.3)

The train corridors are not allowed to overlap each other. To
enforce this, we introduce the constraints

hmax
i−1,g ≤ hmin

i,g , ∀g ∈ Gl, l ∈ Ld, i ∈ C. (7.4)

Further constraints on the capacity corridors that enforce the ca-
pacity corridors to never enclose other train paths are explained in
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Appendix B. These constraints include interactions between capacity
corridors and trains on double and single track stations and on track
sections. Since the planned delivery commitments must be fulfilled,
the constraints described in Appendix A are also included in the op-
timization model. These constraints enforce that there exist feasible
train paths for the already planned delivery commitments and that
these train paths interact correctly on stations and on tracks.

For each corridor, the total time each station and track section g ∈
Gl is not occupied by other train paths and where a train path for the
delivery commitment application can be scheduled can be computed
by hmax

i,g − hmin
i,g . To find the available track capacity for a delivery

commitment application, we first need to find the minimum time
window over all stations and track sections g must be maximized on
all track segments that the delivery commitments request traverses,
i.e. all segments in Ld. The objective in the optimization is

max
∑
l∈Ld

∑
i∈C

min
g∈Gl

{(
hmax
i,g − hmin

i,g

)}
(7.5)

The objective sum up all time intervals on each geographic location
and takes the smallest time interval. This is done to maximize the
train paths that can fit on the available track capacity. This is ex-
plained in Figure 7.13. The broadest time interval is at station C,
but no more train paths, then the number of train paths that can run
through the bottleneck in station A, can be planned on the available
track capacity.

This objective function is not linear. In order to linearize it, we
introduce the continuous variable oi,l for all i ∈ C and l ∈ Ld. Further,
we introduce the constraints

oi,l ≤ hmax
i,g − hmin

i,g ∀i ∈ C, l ∈ Ld, g ∈ Gl. (7.6)

The objective can then be expressed as

max
∑
l∈Ld

∑
i∈C

oi,l (7.7)

The number of capacity corridors, i.e. the size of the set C should
be high enough to ensure that all the available track capacity is found.
This is ensured when adding a capacity corridor from C does not
change the outcome of the optimization. The following algorithm is
used:
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Figure 7.13: The number of train paths that fits in on the
available track capacity (the red area) is constrained by the most
narrow time interval on a station, i.e. the time interval on station
A.

1 Let ncap be any number and let o∗ equal to 0.

2 Set the number of capacity corridors to ncap.

3 Solve the optimization model.

4 If the optimal objective value equals o∗, all available track ca-
pacity has been found and the algorithm terminates. Otherwise,
set the number of capacity corridors to ncap + 1, set o∗ to the
optimal objective value and go to step 3.

Figure 7.14 illustrates this, where the capacity corridors are the
red parallelograms. Starting from only one capacity corridor in Figure
7.14a. The optimization model is solved for one capacity corridor and
two capacity corridors, yielding the result in Figure 7.14b. The op-
timal solution has changed when adding one more capacity corridor,
since more available track capacity can be found. By adding one more
capacity corridor and solving the optimization model again yields the
result in Figure 7.14c. Even more available track capacity has been
found. If one further capacity corridor is added and the optimization
model is solved again in Figure 7.14d, the found available track ca-
pacity does not increase. The number of capacity corridors does not
have to increase even further since the available track capacity can
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not increase more.

3. Calculate the maximum number of train paths
The optimal available track capacity o∗i,l resulting from the optimiza-
tion model in point 2, is used to compute the maximum number of
train paths. The outcome of the optimization is the bottleneck of the
available track capacity. No more train paths, than the number of
train paths that can be planned on this bottleneck, can be planned
on the available track capacity. Let ∆i,r

s be the buffer time needed
between trains for safety reasons. The maximum number of train
paths that can be planned on a track segment, can be calculated as∑

i∈C

oi,l

∆i,r
s

. (7.8)

This is the initial supply x0 on track segment l.

7.4 Models for calculating the stochastic
demand for a train path

In the previous section, we defined the supply of track capacity given
a delivery commitment request in terms of train paths. This result
in the situation illustrated in Figure 7.15a. The demand is on track
capacity, but we need to express it in the same unit as the supply.
Thus, the demand should also be calculated in terms of number of
train paths. If a future delivery commitment is planned in the train
timetable, a number of train paths in the supply will disappear, as in
Figure 7.15b. We define the demand as the number of train paths in
the supply that disappears following that the future delivery commit-
ment is planned in the train timetable. In this section, we construct
models for calculating the stochastic demand in terms of number of
train paths, given the future delivery commitments and their proba-
bility to be applied for.

The idea with dynamic pricing is that the supply should reflect
the number of objects that haven’t been sold, (in our case the sold
objects are the already planned delivery commitments), while the de-
mand should reflect the objects that probably will be sold. Thus, the
supply reflects data of what has happened up to the current date and
the demand considers data of what will happen from the current date.
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(a) (b)

(c) (d)

Figure 7.14: The number of capacity corridors used in the op-
timization must be high enough to saturate the available track
capacity. This means that when adding another capacity cor-
ridor there should not be more track capacity found in the op-
timization where the train path for the delivery commitment
request, marked with red crosses, can be planned. The red par-
allelograms are the capacity corridors and the blue crosses and
lines are the already planned delivery commitments. (a) One ca-
pacity corridor is used. (b) Two capacity corridors are used, and
the available track capacity has increased from (a). (c) Three
capacity corridors are used and the available track capacity have
increased even further than in (b). (d) Four capacity corridors
are used. The available track capacity found are the same as in
(c). Thus, the available track capacity is saturated.
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(a) (b)

Figure 7.15: There are already planned delivery commitments
(blue) in the train timetable and a delivery commitment request
(red) is investigated. (a) The result of the calculations of supply
yielded a number of train paths. (b) If a future delivery commit-
ment (yellow) enter the train timetable a number of train paths,
in this case three, will be removed from the supply. Thus, we
can say that the demand from this future delivery commitment
is three.

Therefore, when calculating the demand, we will not consider the de-
livery commitments that has already been planned, since this has
already been done when calculating the supply. We will investigate
how the future demand will influence the current delivery commit-
ment request. A delivery commitment request will in this section
be illustrated as in Figure 7.16. We assume that we have the not
yet applied for delivery commitments and the probability for each of
them to appear in the train timetable in every period t. We call these
the future delivery commitments and they will be illustrated on the
same form as in Figure 7.16. This is the input when we calculate
the demand. The output is the stochastic variable Dt, to be used
in Equation (7.1), denoting the number of train paths in the supply
that can no longer be planned on the available infrastructure due to a
future delivery commitments that enter the train timetable in period
t. Thus, we need the probability that a certain number (from 0 up to
x0) train paths in the supply cannot be planned for in period t.

A future delivery commitment will affect the delivery commitment
request differently. For instance, if a future delivery commitment
overlaps in time and space the delivery commitment request a lot,
then it is more likely to affect how the delivery commitment request
can be included in a train timetable. Figure 7.17 illustrates this. We
need to calculate the probability that a future delivery commitment
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(a) (b)

Figure 7.16: The track capacity that a delivery commitment
request (red crosses) can use. (a) The red area is the track ca-
pacity where the delivery commitment can be planned (not to be
confudes with the available track capacity since it disregards the
already planned delivery commitments). (b) There is a number
of train paths that can be planned in the red.

will affect the delivery commitment request. The future delivery com-
mitments that do not overlap with the delivery commitment request
will not be considered further, since they do not constrain the avail-
able track capacity for the delivery commitment request.

The train path that should operate the delivery commitments may
occupy different amount of track capacity in relation to one another.
If the future delivery commitment is a slow freight train and the de-
livery commitment request is a high speed train, then that freight
train might take a lot more track capacity from the high speed train,
than the opposite. Thus, there are a number of train paths on the
track capacity for the delivery commitment request that can no longer
be planned in the train timetable due to the train path that should
operate the future delivery commitment. This number will be calcu-
lated for each delivery commitment request. Figure 7.18 illustrates
how many train paths from the delivery commitment request that the
future delivery commitment removes.

To finally get the demand probability, we use the probability that
the future delivery commitment will be applied for, the probability
that these future delivery commitments will overlap the delivery com-
mitment request and the number of train paths that can no longer
be planned in the train timetable due to the delivery commitment
request to get the demand for track capacity, Dt. Starting with a set
of future delivery commitments and the probability distribution that
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(a) (b)

Figure 7.17: The future delivery commitments (yellow) can
affect a delivery commitment request (red) to different degree.
(a) The delivery commitments overlap. If the corresponding
train path to the future delivery commitment is planned in this
area, then the delivery commitment request is affected. (b) The
delivery commitments overlap more and will affect each other
more than in (a).

they will appear in each time period, the steps can be summarized as
follows

1 Calculate the probability that each of the future delivery com-
mitments will affect the supply.

2 Calculate the effect on the supply for each of the future delivery
commitments.

3 Aggregate the effect on the supply from all future delivery com-
mitments into a total demand. This is the demand Dt.

The mathematical description of the stochastic variable Dt, which
we need to use in the dynamic pricing formulation in Equation (7.1)
and (7.2), consists of

• An expected demand dt(pt), which depends on the price pt and
time period t.

• A standard deviation ξt in time period t.

• A discrete probability distribution fkt (dt(pt), ξt)) corresponding
to the probability that k units will be bought in time period t
given the expected demand dt(pt) and standard deviation ξt.
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(a) (b)

Figure 7.18: The future delivery commitments (yellow) can af-
fect a delivery commitment request (red) differently depending
on the train paths. (a) The future delivery commitment travel
in the same direction as, but slower than, the delivery commit-
ment request. The induced demand (dotted lines) is of two train
paths. (b) The future delivery commitment travel in the oppo-
site direction as the delivery commitment request. The induced
demand is of five train paths.

Let T f be the set of future delivery commitments. Further, let
drt (pt) be the expected value (to enter the train timetable) for the fu-
ture delivery commitment r ∈ T f depending on the price pt in period
t and let ξrt be the standard deviation in period t for the future deliv-
ery commitment r. The probability distribution that a train path is
entering the train timetable is denoted as fr,t(d

r
t (pt), ξ

r
t ) for the future

delivery commitment r. Thus, we know the probability that some fu-
ture delivery commitments will be applied for. The rest of this section
describes more thoroughly how the demand is found mathematically
and by the end, we should have the demand expressed as the proba-
bility that k units are bought fkt (dt(pt), ξt)), for k = 0, . . . , x0.

1. Calculate probability that the future delivery commit-
ment will affect the supply
It might not be the case that a future delivery commitment will affect
the supply. A delivery commitment that should be operated during
the night does not affect the delivery commitment that is operated
during the day. At some relative closeness in time they will however
affect each other. If a future delivery commitment partly overlaps the
delivery commitment request, then the future delivery commitment
is a demand on the same track capacity that is applied for by the
delivery commitment request. How much the delivery commitment
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Figure 7.19: The earliest and latest time a train operating the
future delivery commitment r from station A to station B, can
arrive to a station or track section g, disregarding the already
planned delivery commitments, are denoted as kmin

r,g and kmax
r,g

respectively. These times are constrained by the minimal travel
time for the train.

request overlaps with the future delivery commitments needs to be
considered in the probability distribution fkt (d(pt), ξt) for the demand.

Every delivery commitment is connected with a train path which
represents the train that will operate the delivery commitment. Thus,
there is a minimal travel time for each delivery commitment. There
is also a latest departure time from a station such that the delivery
commitment still is fulfilled. These times span some track capacity,
or latest and earliest arrival times to stations, which is illustrated in
Figure 7.19. Let kmin

r,g and kmax
r,g be the earliest and latest time a train

operating the future delivery commitment r ∈ T f can arrive to the
station or track section g ∈ Gl in track segment l ∈ L. Likewise, there
are similar restrictions on the arrival times for the delivery commit-
ment request. Let these be denoted by κmin

g and κmax
g at the station

or track section g.
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Figure 7.20: The probability that a future delivery commit-
ment will affect the delivery commitment request depends on
the total time the delivery commitments overlap and the time
they do not. The red area is the possible track capacity for the
delivery commitment request and the yellow are is the possible
track capacity for the future delivery commitment. The param-
eter ∆∩r,g is the overlapping track capacity on station g and ∆∪r,g
is the total track capacity for both delivery commitments in sta-
tion g.

Let faff
r,l denote the probability that the future delivery commit-

ment r ∈ T f will affect the delivery commitment request in track
segment l ∈ L. Let ∆∩r,g denote the total overlapping time between
the delivery commitment request and the future delivery commit-
ment r on station or track section g, i.e. [kmin

r,g , k
max
r,g ] ∩ [κmin

g , κmax
g ].

Further, let ∆∪r,g denote the total time for both the delivery commit-

ment request and the future delivery commitment, i.e. [kmin
r,g , k

max
r,g ] ∪

[κmin
g , κmax

g ]. Figure 7.20 illustrates ∆∩r,g and ∆∪r,g for a delivery com-
mitment request and a future delivery commitment. The probability
that a future delivery commitment will affect the delivery commit-
ment request is then

faff
r,l = max

g∈Gl

|∆∩r,g|
|∆∪r,g|

. (7.9)

2. Calculate the effects on the supply
For each future delivery commitment r ∈ T f, the effects on the sup-
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Figure 7.21: The effect on the supply from the future delivery
commitment in the track segment from A to C. Red lines are
train paths in the supply and the yellow line correspond to the
train path that should operate the future delivery commitment.
Solid lines are unaffected by the future delivery commitment
and dotted lines are affected by the future delivery commitment.
In train station B there are an extra track for meetings. The
demand inflicted by the future delivery commitment is three.

ply in each track segment is calculated. First, the track capacity
for the delivery commitment request from Figure 7.19 is filled with
train paths. Then, the train path of future delivery commitment is
added within the delivery commitment request. The number of train
paths for the delivery commitment request that need to be removed
to properly include the future delivery commitment request is the ef-
fect on the supply. Figure 7.21 illustrates this for two different future
delivery commitments. The number of train paths for the delivery
commitment request that need to be removed depends on the train
that should operate the future delivery commitment. This is also
illustrated in Figure 7.21. This is calculated for all future delivery
commitments and results in an induced demand from every future
train path. Let the set T f

k,l contain all future delivery commitments
which has a demand of k train paths on track section l. This set is
defined for k = 1, . . . , x0, where x0 is the supply of train paths in
track segment l.

3. Aggregate the future delivery commitments into a total
demand
To find the demand for operating a train on a track segment l, the
probability distribution f rt (drt (pt), ξ

r
t ) for all future delivery commit-

107



Chapter 7. Dynamic pricing of train timetables

ments r ∈ T f need to be aggregated into the demand probability
distribution fk(dt(pt), ξt) for all k = 0, . . . , x0.

The probability that the demand is exactly k items, is the con-
ditional probability that the future delivery commitment which is
causing a demand for k items overlaps (or affects) the delivery com-
mitment request given that it will enter the train timetable. Since
faff
rl denoted the probability that the future delivery commitment af-

fected the delivery commitment request, and f rt (drt (pt), ξ
r
t ) denoted

the probability that the future delivery commitment will enter the
train timetable we can express the probability that the stochastic
variable Dt = k if k > 0, i.e. the demand is for exactly k items as

fk(dt(pt), ξt) =

∑
r∈T f

kl
faff
r,l · f rt (drt (pt), ξ

r
t )∑

r∈T f f rt (drt (pt), ξ
r
t )

. (7.10)

The probability that the stochastic demand Dt = 0 is

f0(dt(pt), ξt) = 1−
x0∑
k=1

faff
r,l fk(dt(pt), ξt). (7.11)

The expected demand is

drt (pt) =

x0∑
k=1

k · fk(d(pt), t, ξt) (7.12)

and the standard deviation is

ξt =

√∑
r∈T f ξ2

t,r

|T f|
. (7.13)

7.5 Experiments and results
The models for supply and demand in the train timetabling case from
Section 7.3 and Section 7.4 are tested on a part of the Swedish railway
network. In Section 7.5.1, they are tested for one delivery commit-
ment request. Section 7.5.2 tests a number of delivery commitment
requests to investigate if the price would be lower for more efficient re-
quests. If so, this is an indication that the suggested dynamic pricing
process would spur a more efficient use of the railway network.
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7.5.1 Testing the models for supply and demand
The models for calculating supply and demand in Section 7.3 and
Section 7.4 have been tested on a small piece of the Swedish railway
network between Skymossen and Mjölby. The railway stretch consists
of single track between Skymossen and Degerön and double track on
the rest. Figure 7.22 shows a map of the railway network. This rail-
way network is mostly operated by freight trains, traveling from the
marshaling yard in Hallsberg just north of Skymossen, and regional
trains, traveling between the cities of Motala and Mjölby. In this sec-
tion, the supply and demand for one delivery commitment request are
calculated. Note that we do not simulate a train timetabling process
using dynamic pricing. We only test what the price would be for one
delivery commitment request.

To calculate the supply the method from Section 7.3 is used. The
first step is to divide the railway network into track segments. We
choose to define the following three track segments from the rail-
way network in Figure 7.22; Skymossen-Degerön, due to the single
tracks, Degerön-Motala, due the double tracks and absence of com-
muter traffic and Motala-Mjölby, due to the double track and the
commuter lines causing denser traffic.

When the railway network has been split into track segments, a
delivery commitment request can be considered. This delivery com-
mitment request is a trip from Mjölby to Skymossen. The already
planned delivery commitments are based on the train paths for one
day in the real train timetable of 2015. We assume that the planned
stops in the stations in the real train timetable are the delivery com-
mitments. The available track capacity is calculated according to Step
2 in Section 7.3. Figure 7.23 illustrates the result. Then, the number
of train paths in the supply for each track segment are calculated

according to Step 3 in Section 7.3. The safety distance ∆r,r′
s between

train r and train r′ is set to 3 minutes for all stations and trains. The
result is a supply x0 of 6 train paths from Mjölby to Motala, 21 from
Motala to Degerön and 21 from Degerön to Skymossen.

The demand is also calculated using the models presented in Sec-
tion 7.4. Currently we don’t have a knowledge of the future train
paths T f and their respective probability to enter the train timetable
given a certain price pt, i.e. fr,t(d

r
t (pt), ξ

r
t ). This was required as an

input when calculating the demand in Section 7.4. In these experi-
ments, we assign the future train paths and their respective probabil-
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Figure 7.22: A map of the railway network between Sky-
mosssen and Mjölby.
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Figure 7.23: The available track capacity for a delivery com-
mitment application from Mjölby to Skymossen. The red crosses
denote the delivery commitment request and the red area is the
available track capacity.

ity distribution by randomly selecting a number of train paths from
the actual train timetable and adjoin them with a probability that
these will appear in a certain time period. This probability is lower
for higher price pt, i.e. if the price is higher then less operators are
willing to pay for the delivery commitment.

When the future train paths are selected and paired with a prob-
ability, we continue with Step 1 from Section 7.4. The value of faff

r,l

is calculated for every future train path. Proceeding with Step 2, the
effect on the supply of the delivery commitment request is calculated
for every future train path. Lastly, in Step 3 all probabilities for the
future train paths and their respective effect on the supply are ag-
gregated into the stochastic variable for the demand Dt. Figure 7.24
illustrates the resulting demand for the delivery commitment request.
Note that the probability that the demand is 0 has a probability 0.
This is due to the lack of indata to the models for the demand.
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Figure 7.24: The probability that the demand in period t is k
train paths for the three different track segments.

When the supply x0 and demand Dt are calculated as above, these
values can be used in the dynamic pricing model in Equation (7.1)
and (7.2).

7.5.2 The price on a delivery commitment request
In Section 7.1 the argument that dynamic pricing will spur a more
effective use of track capacity was put forth. In this section, we first
discuss and describe some factors that affect an efficient track capacity
utilization then we show that the price in dynamic pricing is lower
for delivery commitment requests that yields a better use of track
capacity. This gives an indication that the dynamic pricing process

Some factors that affect the efficiency of the track capacity uti-
lization are:

• The density of traffic, i.e. if the tracks are congested or not.

• The flexibility of the delivery commitments request.

• The homogeneity of the traffic.

In this section, we will describe how the price on a delivery com-
mitment request should depend on the characteristics of the delivery
commitments in relation to these three factors.
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(a) (b)

Figure 7.25: The price should depend on how congested the
tracks are. The already planned delivery commitments are illus-
trated with blue crosses and delivery commitment request with
red crosses. The supply for the delivery commitment request is
10 in (a) and 7 in (b). Disregarding the future demand, the sup-
ply is larger in (a) than in (b), thus the delivery commitment
request in (b) would occupy track capacity in higher demand
than in (a) and should thus have a higher price. The discussion
of how much track capacity that is in demand is analogous.

If there is a high density of traffic, then the tracks might be con-
gested. When the tracks are congested, there is a high demand to
have delivery commitments on that track capacity. Track capacity in
high demand should have a higher price using dynamic pricing, thus
encouraging operators to apply for delivery commitments that should
be operated during less congested times. If there is a high demand to
operate a delivery commitment on some track capacity, then this is
mirrored in both the supply and demand. The high demand increases
the probability that the track capacity will be sold. Further, if there
is a high demand, then a lot of track capacity might already be sold.
Thus, a high demand would yield a low supply. Figure 7.25 illustrates
how the supply for a delivery commitment request is decreasing due
to congestion.

The flexibility of the delivery commitment should affect the price.
Flexibility means the possibilities the train timetable planner has to
plan the delivery commitment request into the train timetable. The
larger flexibility the delivery commitment request has, the more possi-
bilities do the train timetable planner have, the lower price should be
charged. If a delivery commitment request has a larger flexibility, it
also has a larger supply, since a larger flexibility means more options
for possible train paths. Figure 7.26 illustrates how a delivery com-
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(a) (b)

Figure 7.26: The price should depend on the flexibility of
the delivery commitment request. The already planned delivery
commitments are illustrated with blue crosses and the delivery
commitment request is illustrated with red crosses. The deliv-
ery commitments in (b) specifies a larger maximal travel time
than in (a). The supply is larger in (b) than in (a) and thus the
delivery commitment request in (b) should have a lower price.

mitment request with more flexibility, due to a larger maximum travel
time, has a larger supply compared to a similar delivery commitment
request with a smaller maximum travel time.

The price should also depend on whether or not the delivery
commitment request will contribute to the homogeneity of the train
timetable on the tracks, which Figure 7.27 illustrates. If the delivery
commitment request contribute to the homogeneity, the supply will
be higher and the demand will be lower as Figure 7.27 illustrates. In
Figure 7.27a, the future delivery commitment and the already planned
delivery commitment have the same minimal travel time on the track.
The delivery commitment request has a supply of eight train paths.
The future delivery commitment results in a demand of one train
path. Figure 7.27b and 7.27c illustrates the situation when the deliv-
ery commitment request is from a train with another minimal travel
time than in Figure 7.27a. Both in Figure 7.27b and Figure 7.27c,
the already accepted delivery commitment and the future delivery
commitment are the same as in Figure 7.27a. In Figure 7.27b, the
delivery commitment request is from a slower train. The supply is five
train paths and the demand is for two train paths. In Figure 7.27c,
the delivery commitment request is from a faster train. The supply
is eight train paths and the demand is for two train paths. Thus, if
a delivery commitment request diverges from the velocity and direc-
tion of the already planned and future delivery commitments, then
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there are less train paths in the supply for that delivery commitment
request and more train paths in the supply will become unavailable
due to the demand. To conclude, if the delivery commitment request
causes more heterogeneity, the supply will be lower and the demand
higher. The most efficient train timetable is the most homogeneous
train timetable. Thus, setting a lower price on delivery commitments
which contribute to homogeneity spurs a better use of track capacity.

Some experiments are performed to test whether or not the price
depends on the factors that are mentioned in the beginning of this
section. The aim of the experiments is to test if the models for calcu-
lating supply and demand will result in a more efficient use of track
capacity, by pricing more efficient delivery commitment requests lower
than less efficient delivery commitment requests. This is investigated
on the railway network between the Swedish towns Degerön and Sky-
mossen, which is illustrated in Figure 7.22.

To investigate if the price depends on the density of the traffic,
the price is calculated for a number of different delivery commitment
requests. These delivery commitment requests all have the same max-
imum travel time and train path, but the earliest departure time is
varied. Figure 7.28 displays the result as a graph with the earliest
departure time on the x-axis and the average revenue per train on the
y-axis. We choose to display the average revenue to the infrastruc-
ture manager (total expected revenue divided by expected number of
sold units) instead of the price of the delivery commitment. Using
the previous estimations on the demand, we have assigned a large
probability that train paths enters late in the train timetabling pro-
cess. Thus, the resulting price on the delivery commitment request
from the dynamic pricing is to set a very large price so that nothing
is expected to be sold and instead sell all the track capacity later
when the revenue can be higher. In other words, the price of the
delivery commitment request in the test case corresponds to the price
that sells zero train paths. The average revenue on the other hand
includes the aspect that the price is altered until the day of operation
and also includes how much of the supply that is expected to be sold.
The largest increase in average revenue is between 18:00 and 21:00s.
During this time there is usually a lot of commuter traffic and freight
traffic on the tracks.

To investigate if the flexibility of the delivery commitment request
affects the price, the price is calculated for a number of a delivery
commitment requests. These delivery commitment requests are the
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(a)

(b)

(c)

Figure 7.27: The price should depend on the homogeneity of
the train timetable. The already planned delivery commitment
(dashed blue) and future train path (dashed yellow) affect the
train paths in the supply of a delivery commitment request (red).
The number of train paths in the supply, that become occupied
if the future train path is applied for, is the demand (dotted red).
(a) The train paths are traveling with similar speed. There are
eight train paths in the supply. The demand is for one train
path. (b) The request is for a train with a slower speed than
in (a). There are five train paths in the supply. The demand
is for two train paths. (c) The request is for a faster train than
in (a). The supply is eight train paths. The demand is for
two train paths. Thus, delivery commitments contributing to
homogeneity have a higher supply and a lower demand.
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Figure 7.28: The average revenue per item in supply depending
on the requested earliest departure time.

same except that the maximal travel time is varied. Figure 7.29 shows
the result. The trend is that the revenue decreases with increasing
maximal travel time. The slow decrease in revenue is due to the initial
high supply and a price function that decreases very slowly.

To investigate if the price of a delivery commitment request is
affected by the homogeneity of the train timetable, the price is cal-
culated for a number of delivery commitments with varying maximal
travel speed. Similar to the previous experiments, the delivery com-
mitments are the same except for the minimal travel time of the train
paths. Figure 7.30 illustrates how the minimum travel time is varied
for the delivery commitment requests. Figure 7.31 displays how the
average expected revenue for each sold item varies over the percentage
added to the minimal travel time.

7.6 Discussion
The result from Section 7.5.1 shows that the proposed models for
supply and demand calculate values of the initial supply x0 and the
stochastic demand Dt that can be used in Equation (7.1) and (7.2).
The result from Section 7.5.2 shows that the proposed models for cal-
culating supply and demand has the requested impact on the price,
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Figure 7.29: The average revenue per item in the supply when
increasing the maximal travel time of the delivery commitment
request. The time deviation is the earliest possible arrival time
minus the earliest departure time.

i.e. that the price depends on the density of the traffic, the flexi-
bility of the delivery commitments request and the homogeneity of
the traffic. Thus, the proposed models for calculating supply and
demand can successfully calculate a price based on the availability
of and demand for track capacity. There are also some indication
that the models for supply and demand spur a better track capacity
utilization, which was the aim of using dynamic pricing on delivery
commitment requests.

We have not investigated how to find the future delivery commit-
ments and the probability that these delivery commitments will enter
the train timetable, which is used as an input when calculating the
demand in Section 7.4. Currently, we do not have the data such that
we can investigate when a delivery commitment is applied. If such
data eventually will be available, it should be investigated when and
which delivery commitments are applied for. Further, there is cur-
rently not a market price on track capacity set anywhere so there is
not any possibility for to find how the probability distribution changes
with higher and lower price. Thus, we cannot find the dependence of
pt in the the mean demand drt (pt). If the market for track capacity
would open, then this relation can be found.
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(a) (b)

Figure 7.30: The travel speeds of the delivery commitments are
varied by multiplying a percentage to the minimal travel time on
every track section. The extra travel time is the requested latest
arrival time minus the minimal travel time and the magnitude
is the same for all investigated delivery commitment requests.

Figure 7.31: The average revenue per sold item when increas-
ing the minimal travel time for the train. This is done to inves-
tigate if the price varies depending on the delivery commitment
request’s homogeneity to the other traffic on the tracks.
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Chapter 8

Conclusion and future
research

This section describes the conclusion and draws out some areas for
future research.

8.1 Conclusions
This thesis presents a method for investigating a train timetable for
the publicly subsidized traffic. The train timetable is optimal in terms
of number of departures and distribution of the departures over the
day. The generalized cost and production cost for all trains that
operate the lines, defined by the commuter or regional train provider,
are the objective in an optimization model. This optimization model
has been solved for a varying number of trains performing the traffic.
The result of this work is that, instead of not having any guidelines
for investigating how many trains operating the publicly subsidized
traffic that should be scheduled in the future, it is now possible to plan
a train timetable based on the societal benefit in terms of social cost-
benefit analysis. Other traffic has also been added to the optimization
model to investigate the value of the track capacity for the publicly
subsidized traffic against the value of the commercial traffic. This
value adds an indication of the value of the commercial traffic that
is pushed away from their requested train paths and vice versa. This
method can then be used to reserve track capacity to the publicly

121



Chapter 8. Conclusion and future research

subsidized traffic. The optimization model have been tested on real
data and the conclusion is that the optimization model works.

This thesis also presents models for calculating supply and de-
mand of track capacity. These models for supply and demand make
it possible to use existing models for dynamic pricing. Further, it is
investigated that these models result in what is expected from dy-
namic pricing, which is a higher price on track capacity in higher
demand and a lower price on more efficient delivery commitments.
The models for supply have also been tested with good results on
more complicated and larger network problems, to investigate if they
also work on delivery commitment requests that travel for longer dis-
tances. The conclusion is that the models for supply and demand can
be used in a dynamic pricing setting.

8.2 Future research
The foundation of this research is the train timetabling process at
the Swedish Transport Administration and we have followed the EU
railway directives. The aim is a train timetable that is maximized in
terms of societal benefits. The road from research to implementation
is still long and there are some research gaps emanating from the
research in this thesis. The gaps are:

• How the railway network should be split into track segments
(Step 1 when finding the supply).

• How to find the set of future delivery commitments T f and their
respective distributions (Step 1 when finding the demand).

• The effect of price on the demand.

• How should the price be set, i.e. what should be maximized in
the dynamic pricing.

• Does the dynamic pricing process really spur a more efficient
train timetable.

We have not at all considered how the railway network should be
split into track segments. The reason is that this is a very practi-
cal question and should be done by people with more real life train
timetabling experience. We have also not considered how to find the
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set of future delivery commitments. Currently, the train timetabling
process in Sweden uses train paths, and not delivery commitments.
Thus, we cannot make a statistical analysis on the delivery commit-
ments. It is possible to make a statistical analysis on the train paths,
but a more thorough analysis is needed. The data of the probabil-
ity that the train paths enter a train timetable over time does not
exist at the moment. The Swedish Transport Administration does
not separate rescheduled trains and added trains in the Short-term
process. Thus, the real demand over time for new train paths cannot
be known.

The effect of the price on the demand has not been investigated.
Currently, track capacity is not allocated using a pricing mechanism.
The price is low and practically fixed for the different applications.
Thus, it is not possible to know how the demand increases due to a
price decrease or increase. However, the lack of data does not indicate
that this relation is impossible to find. Like all market openings, the
relation between price and demand is initially uncertain, but after
time it becomes more known.

In this research, we have not considered how the price should be
set. Since the infrastructure manager usually is a monopolist and a
governmental agency, revenue maximization leads to monopoly prices.
This is not very good or efficient, especially if the goal is to get a
more beneficial and growing railway market where new operators can
establish operations and existing operators can evolve their market
into new destinations or market segments. Thus, some future research
should be put on what to maximize using dynamic pricing and inves-
tigate if this yields an outcome that is the societal optimum, i.e. all
existing track capacity is used by the operators that were willing to
pay the most for it.

The dynamic pricing method for train timetabling should be more
thoroughly investigated for real life cases. For instance, the Short-
term process using dynamic pricing can be simulated to see if the
resulting train timetable is more efficient in terms of how much track
capacity is used and how this track capacity is used. The simulation
can also investigate if the outcome yields more societal benefits than
without dynamic pricing. Different choices of what to maximize in
the dynamic pricing instead of the revenue, as the discussion in the
previous paragraph, can be tested in this simulation.
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Appendix A

Infrastructure and travel
constraints

The optimization problems solved in this thesis are all applied to rail-
way timetabling. The aim of the optimization models is to generate a
train timetable with some desired characteristics, defined by the ob-
jective function. The thesis describes the objective of the optimization
problems and some complimentary constraints. The constraints that
enforce single or double track, only one train on a track, minimum
travel time, etc. are left out from the main chapters but are still an
important part of the optimization. These constraints are called the
infrastructure and travel constrains. This appendix explains these
constraints, which are the same constraints used in the optimization
model from Gestrelius et al., 2015.

Let G denote the set of geographic locations on a railway network.
A geographic location is either a station or a track section connecting
two adjacent stations. Let S and L denote the set of stations and
track sections respectively. Each station is always followed by a track
section and each track section is always followed by a station. Let
the set T be the set of trains driving on the railway network. Ev-
ery train in r ∈ T has a requested route through the network. Let
Gr denote the set of all geographic locations on this route. Let the
geographic location g + 1 ∈ Gr denote the geographic location after
g on the route. Further, let Sr and Lr be the set of stations and
track sections train r passes on the route Gr, respectively. Note that
Gr = Sr ∪ Lr. Sometimes, two trains do not interact on the railway
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network, but interact outside the railway network. To include this in
the calculations define the geographic location for outside, denoted
as gout. Let tr,g be a continuous variable denoting the time train r
arrive to the geographic location g. All train trips end in gout, i.e.
outside the railway network. The rest of this appendix describes the
constraints enforced by the infrastructure and train trip.

A.1 Continuity constraints
The train has restrictions in how fast it can travel and where it should
stop. This section describes these constraints.

Continuity constraints
The train r ∈ T spends a certain amount of time at each geographic
location g on its route Gr. Let the continuous variable ωr,g be the
time train r spends on geographic location g. The time when the
train r reaches g+1 is at tr,g +ωr,g. This is the trip continuity, which
is enforced by the constraint

tr,g + ωr,g = tr,g+1 r ∈ T , g ∈ Gr \ {gout}. (A.1)

The geographic location gout is excluded since the train trip ends
there.

Dwell times at stations
Every train r ∈ T has a minimum dwell time at each station s ∈ Sr
corresponding to needed time for passenger exchange or loading and
unloading goods. If the train just passes the station, the dwell time
equals to a very small time ε. Let ωmin

r,s denote the minimum dwell
time for train r on station s. The constraint enforcing a minimum
dwell time on a station is

ωmin
r,s ≤ ωr,s r ∈ T , s ∈ Sr. (A.2)

Dwell times on track sections
The dwell times at the track sections correspond to the minimum
travel time of a train. The acceleration and deceleration are also
important factors in the amount of time a train spends on a track
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section. If a train stops at a station, it has to decelerate at the pro-
ceeding track section and accelerate at the successive track section.
The minimum dwell times will then increase compared to if the train
just had passed both stations. The optimization model needs to ac-
count for this extra time on the track section. A stop at a station
is either enforced in input data or added in the optimization. The
optimization adds stops for a train if, for instance, two trains cross
or overtake each other or if it is congestion on the track section.

Trains are only allowed to make stops at stations. The minimum
station dwell time, ωmin

r,s is assumed to not be affected if a train stops.
However, if the dwell time at a station s is prolonged by more than
a constant time δr,s, then train r is assumed to have stopped at the
station. To include the change in dwell time due to stops in the
optimization model, two binary variables are introduced, γr,s and
γboth
r,l . These binary variables are defined as

γr,s =

{
1, if train r stops at station s,

0, otherwise,
(A.3)

and

γboth
r,l =

{
1, if train r stops at both ends of track section l,

0, otherwise.
(A.4)

Let LSS denote the set of track sections where the train may stop
at both ends and let LFF denote the set of track sections where the
train may travel at full speed at both ends. Further, let LSF denote
the set of track sections where a train may stop at the preceding sta-
tion and LFS denote the set of track sections where trains may stop
at the subsequent station. For each train in r ∈ T and geographic lo-
cation g ∈ Gr, all allowed stopping behaviors have a defined minimum
travel time. Let ωSSr,g denote the minimum travel time for a train r

on a track section l that stops in both ends, ωSFr,g and ωFSr,g denote a
train that stops at the proceeding station and the subsequent station,
respectively. Further, let ωFFr,g denote the minimum travel time for a
train that does not stop at either adjacent station of a track section.

The appropriate minimum travel times at a track section is en-
forced using the big-M method, where M is a large constant. The
constraints that enforce the minimum travel time are
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ωr,s ≤ ωmin
r,s + δr,s +Mγr,s r ∈ T , s ∈ Sr (A.5)

ωFFr,l ≤ ωr,l r ∈ T , l ∈ LFFr (A.6)

ωSFr,l γr,l−1 ≤ ωr,l r ∈ T , l ∈ LSFr (A.7)

ωFSr,l γr,l+1 ≤ ωr,l r ∈ T , l ∈ LFSr (A.8)

γr,l−1 + γr,l+1 ≤ 1 + γboth
r,l r ∈ T , l ∈ LSSr (A.9)

ωSSr,l γ
both
r,l ≤ ωr,l r ∈ T , l ∈ LSSr (A.10)

Note that l − 1 and l + 1 are stations. If there is a required
maximum travel time on a track section, ωmax

r,g this is also constrained
with the constraint

ωr,g ≤ ωmax
r,g r ∈ T , g ∈ Gr. (A.11)

At stations where the operator has requested a stop, the binaries
γr,s and γboth

r,l are set to an appropriate number for the stop.

Domains for train times
If the requested departure time for a train is in the evening, it is not
meaningful to allow the train to be scheduled during the morning. If
that would be the case, the train would probably loose its commercial
value for the operator. Thus, there is a time interval where the train
is allowed to be scheduled.

Let lmin
r,g and lmax

r,g denote points in time train r and geographic

location g such that [lmin
r,g , l

max
r,g ] forms a time interval. The train path

of train r is not allowed to deviate from these time intervals. Thus,
the time variable tr,g has to be in the time interval [lmin

r,g , l
max
r,g ]. The

constraints that enforce this are

tr,g ≤ lmax
r,g r ∈ T , g ∈ Gr (A.12)

tr,g ≥ lmin
r,g r ∈ T , g ∈ Gr. (A.13)

The set of these time intervals for a train is called a domain. The
domains are used to establish which location and which pairs of trains
that are relevant for interactions. If there were no domains, all trains
traveling on the same railway network can interact with each other
at all possible geographic locations where trains can interact. This
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would result in a very large complexity of the optimization model.
Using domains, the complexity is decreased to having only relevant
trains to interact at relevant geographic locations.

A.2 Interaction constraints
There are two types of interactions, i.e. crossings and overtakings. If
two trains in the interaction drive in opposite directions, the interac-
tion is a crossing. If two trains in the interaction drive in the same
directions, the interaction is an overtaking. The added constraints
will depend on these interaction types. Let K denote all pairs of
trains which may interact. Furthermore, let G(r, r′) denote all geo-
graphic locations where trains r and train r′ may interact. Define the

interaction variables yr,r
′

g , ∀g ∈ G(r, r′), (r, r′) ∈ K.

yr,r
′

g =

{
1, if train r and r′ interacts at geographic location g,

0, otherwise.

(A.14)
Let KC denote the set of all pairs of trains r, r′ ∈ T which can cross
each other. Similarly, let KO denote all pairs of trains which can
overtake each other. The constraints added for the overtaking are
the same for all possible geographic locations. The constraints added
for crossings depend on whether the geographic location for the in-
teraction is a station on a single track, a station on a double track
or a double track section. Let SS and LS be the sets of stations on
a single tracks and track sections which are single track, respectively.
Similarly, SD and LD are the set of stations on double track and track
sections which are double track. We assume that on double tracks
opposing trains never travel on the same physical tracks. In the set
of this section we will define the constraints for crossings and over-
takings.

Crossings
Crossings occur when train traveling in opposing directions meet.
There are three different aspects of crossings.

1 Crossings where train arrival order matters, which is on stations
on single tracks.
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2 Crossings where train order arrival do not matter, which is on
stations on double tracks.

3 No crossing occurs between the trains.

Generally, the train order matters if there are safety regulations en-
forcing a certain time between train arrivals or when the first train
arriving to a location has to stop. One important aspect of crossings
is that trains can only meet once, and thus only interact once.

Let the binary interaction variable yr,r
′

g be redefined to

yr,r
′

g =

{
1, if train r arrives before r′ at geographic location g,

0, otherwise.

(A.15)
for train interactions where the arrival order matters. Thus, at each
interaction location where the arrival order matters there are two
binaries yr,r

′
g and yr

′,r
g . If the arrival order does not matter there is

only a need for one binary variable, which is yr,r
′

g .
Let the subset KAC ⊆ KC be all pairs of train, between which the

arrival order matters. Thus, if (r, r′) ∈ KAC , then (r′, r) ∈ KAC . Let
KNC ⊆ KC be the set of train pairs (r, r′) where the arrival order does
not matter, such that if (r, r′) ∈ KNC then (r′, r) /∈ KNC .

Crossings at single track stations
A single track station is a station that is adjacent to single tracks.
Due to safety regulations at single track stations, it is necessary to
keep track of the arrival order at train crossings. The train arriving
first needs to stop and wait for the second train to pass the station.
Let SS(r, r′) ⊆ S(r, r′) be the set of single track stations where trains
r and r′ can meet and one of them must stop. If the interaction

variable yr,r
′

g = 1 then train r must arrive before train r′ and depart

after train r′. The constant ∆r,r′
s is the safety buffer time at the

station. The interaction constraints are

tr,s + ∆r,r′
s − tr′,s ≤ M(1− yr,r′g ) s ∈ SS(r, r′), (r, r′) ∈ KAC

(A.16)

tr′,s − tr,s+1 ≤ M(1− yr,r′g ) s ∈ SS(r, r′), (r, r′) ∈ KAC .
(A.17)

For the other case where r′ must arrive before r and depart after r

then the same constraints are imposed on variable yr
′,r
g instead. Due
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to the possible stop made by train r, the dwell time at the track
section increases. This is imposed by the constraint

yr,r
′

s ≤ γs,r s ∈ SS(r, r′), (r, r′) ∈ KAC . (A.18)

Crossings at double track stations
At double track stations the arrival order does not matter and none
of the trains have to stop. Thus, only one interaction variable yr,r

′
g

is defined. Let the set SD(r, r′) include all stations where crossings
may take place. The interaction constraints are

tr′,s − tr,s ≤ M(1− yr,r′g ) s ∈ SD(r, r′), (r, r′) ∈ KNC (A.19)

tr,s − tr′,s+1 ≤ M(1− yr,r′g ) s ∈ SD(r, r′), (r, r′) ∈ KNC . (A.20)

Note that s+ 1 is a track section and that tr′,s+1 denotes the arrival
to the track section s+1, i.e. the departure from station s by train r′.

Crossings at double track sections
Trains traveling in opposite directions on a double track will travel on
different physical tracks and can meet on the track sections. There
are no need for the trains to stop and there are no regulations about a
safety buffer time. Let LD(r, r′) be the set of all double track sections

where r and r′ may meet and let yr,r
′

g take the value one if trains r
and r′ meet on track section l ∈ LD(r, r′). The interaction constraints
are

tr′,l − tr,l ≤ M(1− yr,r′g ) l ∈ LD(r, r′), (r, r′) ∈ KNC (A.21)

tr,l − tr′,l+1 ≤ M(1− yr,r′g ) l ∈ LD(r, r′), (r, r′) ∈ KNC . (A.22)

Note that, almost similar to double track stations, l + 1 is a station
and tr′,l+1 denotes the arrival of train r′ to station l + 1.

No crossing
Train moving in the opposite direction will never meet if one of the
trains exits the common geographic locations before the second train
enters it. Let gfr,r′ be the geographic location in the common geogra-

phy of Gr ∩ Gr′ that train r reaches first and glr,r′ be the geographic

location train r reaches last. Similarly, define gfr′,r and glr′,r for train
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r′. Note that gfr,r′ = glr′,r and gfr′,r = glr,r′ , since the trains drive in the

opposite direction. Define variables yr,r
′

out and yr
′,r

out . If train r exists

the common geographies before train r′ enters it then yr,r
′

out equals 1.
If train r′ exists the common geographies before train r enters it, then

yr
′,r

out equals 1. The interaction constraint is

t
r′,gf

r′,r
− tr,gl

r,r′
≥M(yr,r

′

out − 1) (r, r′) ∈ KC . (A.23)

Choosing interaction location
Crossing trains are only interacting on one geographic location. Thus,
only one of the binary interaction variables for train r and r′ can be
equal to one. To enforce this, the constraint∑
s∈SS(r,r′)

(yr,r
′

g + yr
′,r
g ) +

∑
s∈SD(r,r′)

yr,r
′

g +
∑

l∈LD(r,r′)

yr,r
′

l + yr,r
′

out + yr
′,r

out = 1

(r, r′) ∈ KC
(A.24)

is defined.

Overtakings
Trains traveling in the same direction can be at a station at the same
time. This is called an overlap. An overtake occurs if a train arrives to
a station after and leaves before another train traveling in the same
direction. Trains can overlap without making an overtaking. Let
SO(r, r′) be the set of stations where the train r and r′ can overlap

each other. Let xr,r
′

s be binary overlap variables defined as

xr,r
′

s =

{
1, trains r and r′ overlap at station s,

0, otherwise.
(A.25)

Further, let binary variable pr,r
′

s encode if train r′ arrives to station s
before train r departs according to

pr,r
′

s =

{
1, train r′ arrives to a station s before train r depart,

0, otherwise.

(A.26)
That a train r′ arrives to station s before train r departs is a

condition for an overlap to occur. Thus, the binary variable pr,r
′

s
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constrains the binary variable xr,r
′

s . Also, a train must overlap in

order to overtake, which means that xr,r
′

s constrains the interaction

variable yr,r
′

g . The constraints defined for overtakings are defined as

tr,s+1 − tr′,s ≤ Mpr,r
′

s s ∈ SO(r, r′), (r, r′) ∈ KO (A.27)

tr′,s − tr,s+1 ≤ M(1− pr,r′s ) s ∈ SO(r, r′), (r, r′) ∈ KO (A.28)

pr,r
′

s + pr
′,r
s ≤ xr,r

′
s + 1 s ∈ SO(r, r′), (r, r′) ∈ KO (A.29)

xr,r
′

s ≤ pr,r
′

s s ∈ SO(r, r′), (r, r′) ∈ KO (A.30)

xr,r
′

s ≤ pr
′,r
s s ∈ SO(r, r′), (r, r′) ∈ KO (A.31)

yr,r
′

g ≤ xr,r
′

s s ∈ SO(r, r′), (r, r′) ∈ KO. (A.32)

Ordering variables
When trains move in the same direction, the train order must be
maintained at all geographic locations in the railway network. Let

vr,r
′

s be a binary variable that keeps track of the train order such that

vr,r
′

s =

{
1, if train r′ arrives before r to geographic location g,

0, otherwise.

(A.33)
This means that in overtakings the train order must be preserved

on both sides of the interaction location. In other words, if train r
arrives to the common geography before train r′ and train r′ overtakes
r for the first time at station s, then tm,r < tm,r′ for all geographies
m reached by the trains before s and tn,r′ < tn,r for all geographies n
reached by the trains after s. This holds true until train r overtakes
train r′. Note that the train order can only change at locations where
interactions can occur. Therefore, it is only necessary to keep track
of the order at these locations. For all geographic locations that are
not interactions locations the train order will be the same as the
train order at the next interaction location. However, to facilitate

notation vr,r
′

s will be used for all s ∈ S. The constraints for ensuring
an appropriate train order at the interaction locations are
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vr,r
′

s − vr,r
′

s+1 ≤ yr,r
′

g s ∈ S(r, r′), (r, r′) ∈ KO (A.34)

vr,r
′

s+1 − v
r,r′
s ≤ yr,r

′
g s ∈ S(r, r′), (r, r′) ∈ KO. (A.35)

Trains traveling in the same direction can overtake each other
many times. Therefore there is no constraint that enforces only one
interaction location to be chosen. Thus, an option for ”no interaction”
is not required, as it was for crossings. If no overtaking occurs between

train r and r′, then yr,r
′

g is zero for all g ∈ G(r, r′).
If an overlap occurs, the binary variables for stopping at a station

defined in Section A.1 are constrained. This constraint depends on

the binary variables for interactions yr,r
′

g and the binary variables for

train order vr,r
′

s . The constraints are

vr,r
′

s − yr,r′g ≤ 1 + γ s ∈ S(r, r′), (r, r′) ∈ KO (A.36)

1− vr,r′s − yr,r′g ≤ 1− γ s ∈ S(r, r′), (r, r′) ∈ KO. (A.37)

A.3 Safety regulation constraints
There are a number of safety regulations that have to be considered in
the optimization model. These safety regulations depend on whether
the train is on a station or on a track section.

Safety buffer times at stations
The optimization model includes three different station types based
on the safety aspects.

1 Station requiring 3 minutes between train r and r′.

2 Station requiring 2 minutes between train r and r′.

3 Station requiring 1 minutes between train r and r′ or both trains
must stop.

Let SF be the set of stations in category 1-2 and the respective safety

buffer time is denoted ∆r,r′
s . Further, let SM denote the set of stations

in the third category.
When trains move in the opposite directions on double track sec-

tions, the is no requirement on the safety buffer time. When trains
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move in the opposite directions and meet at single track sections, the
safety buffer times can be included in the interaction constraint by

setting the length of ∆r,r′
s in Equation (A.16) and (A.17).

For stations in category 3, the binary variable wr,r
′

s is introduced.

This variable is used to chose between ∆r,r′
s = 0 or ∆r,r′

s = 1 according
to

wr,r
′

s =

{
1, safety buffer time is 1 minute,

0, no safety buffer time.
(A.38)

As opposed to trains moving in the opposite directions, train mov-
ing in the same direction can overlap at stations even it there is no
overtaking. The safety constraints must be followed at all stations
where the train may overlap. Thus, the constraints introduced for
the stations of category 3 are

tr′,s − tr,s −∆r,r′
s (1− γr′,s) ≥ M(vr,r

′
s − 1),

∀s ∈ SM ∩ SO(r, r′), (r, r′) ∈ KO
(A.39)

tr′,s − tr,s −∆r,r′
s (1− γr,s) ≥ M(vr,r

′
s − 1),

∀s ∈ SM ∩ SO(r, r′), (r, r′) ∈ KO
(A.40)

tr,s − tr′,s −∆r′,r
s (1− γr,s) ≥ −Mvr,r

′
s ,

∀s ∈ SM ∩ SO(r, r′), (r, r′) ∈ KO
(A.41)

tr,s − tr′,s −∆r′,r
s (1− γr′,s) ≥ −Mvr,r

′
s ,

∀s ∈ SM ∩ SO(r, r′), (r, r′) ∈ KO
(A.42)

tr′,s − tr,s − wr,r
′

s ≥ M(vr,r
′

s − 1),

∀s ∈ SF ∩ SO(r, r′), (r, r′) ∈ KO
(A.43)

tr,s − tr′,s − wr
′,r
s ≥ −Mvr,r

′
s ,

∀s ∈ SF ∩ SO(r, r′), (r, r′) ∈ KO.
(A.44)
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Safety buffer times at track sections
Trains traveling in the opposite direction, will cross each other. Thus,
they will only interact at one geographic location and the constraints
presented in Section A.2 will ensure that this interaction will obey
the safety regulations. For trains traveling in the same direction, the
safety buffer times at track sections must be enforced separately. In
this case the constraints in Equation (A.34) and (A.35) will ensure

that the train order is feasible. When ∆r,r′
s is a security buffer time

required when train r arrives before r′ to the geographic location g,
new constraints need to be introduced. The rest of this section de-
scribes these constraints.

Single track sections
Two trains may not occupy the same single track section at the same
time. The Swedish Transport Administration states that if train r′

follows train r on a single track section l ∈ LS(r, r′) then train r must
have left the track l at least 3 minutes before train r′ enters it, unless
train r′ has a stop right before entering track section l. If train r′ has
a stop before entering track section l, then train r′ may enter track l
at the same time train r leaves it. The safety constraints that enforce
this safety buffer time are

tr′,l − tr,l+1 −∆r,r′

l (1− γr′,l−1) ≥ M(vr,r
′

l − 1),

∀l ∈ LS(r, r′), (r, r′) ∈ KO
(A.45)

tr,l − tr′,l+1 −∆r′,r
l (1− γr,l−1) ≥ −Mvr,r

′

l ,

∀l ∈ LS(r, r′), (r, r′) ∈ KO.
(A.46)

Double track sections
On double track sections, there must be a certain buffer time between
trains traveling in the same direction, both when they arrive to the
track section and when they leave it. This implies that there must be

a safety buffer time ∆r,r′
s between the arrivals of train r and r′ at all

geographic locations g ∈ GD(r, r′). The constraints that enforce this
are
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tr′,l − tr,l −∆r,r′
s ≥ M(vr,r

′
s − 1) l ∈ LD(r) ∩ LD(r′), (r, r′) ∈ KO

(A.47)

tr,l − tr′,l −∆r′,r
s ≥ −Mvr,r

′
s l ∈ LD(r) ∩ LD(r′), (r, r′) ∈ KO.

(A.48)
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Appendix B

Capacity corridor
constraints

A capacity corridor is some available track capacity where a feasible
train path that fulfills a delivery commitment can be planned. These
corridors are used in Section 7.3 to find the supply. This section de-
scribes the constraints added to the optimization problem for finding
the capacity corridors.

Let C be the set of capacity corridors. The union of all capacity
corridors represents the track capacity on which a delivery commit-
ment request can be scheduled. The route of the delivery commitment
request is split into track segments L. Let Gl denote the geographic
locations in each track segment l ∈ L. The delivery commitment
request constrains the arrival and departure time from some of the
geographic locations in Gl. Thus, there are a latest arrival time lmax

i,g

and an earliest arrival time lmin
i,g from the geographic location g ∈ Gl.

Introduce the continuous variables hmin
i,g and hmax

i,g . These variables
denote a possible earliest and latest time a train can arrive to the
geographic location g. Thus, each capacity corridor i consists of a
time interval [hmin

i,g , h
max
i,g ] at every geographic location g ∈ Gl.

The union of the capacity corridors should be the available track
capacity for a delivery commitment. Thus, the corridors should con-
sider the train that should operate the delivery commitment request.
Constraints for continuity, interactions and safety against other trains
should thus also be implemented on the capacity corridors. There-
fore, the constraints on the capacity corridors are a modification to
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the constraints for the trains introduced in Appendix A. The focus in
this appendix will be to show the modified constraints, and not to ex-
plain them. For an explanation, a reference to the modified constraint
is given.

B.1 Continuity constraints
The capacity corridors should be able to contain the train that should
operate the delivery commitments. The variables hmin

i,g and hmax
i,g must

be a time interval [hmin
i,g , h

max
i,g ], thus introduce the constraint

hmin
i,g ≤ hmax

i,g ∀g ∈ Gl, l ∈ L, i ∈ C (B.1)

to achieve this.
The capacity corridor must also fulfill the movements of the train

that will operate the delivery commitments. Let the continuous vari-
able ωi,g be the dwell time for this train on station of track segment
g. If the train would arrive to the geographic location g ∈ Gl at the
time hmin

i,g , then the earliest train for hmin
i,g+1 is hmin

i,g + ωi,g. The same
hold for hmax

i,g . The continuity constraints are

hmin
i,g + ωi,g = hmin

i,g+1 g ∈ Gl, l ∈ L, i ∈ C (B.2)

hmax
i,g + ωi,g = hmax

i,g+1 g ∈ Gl, l ∈ L, i ∈ C. (B.3)

These are similar to the constraint in Equation A.1.
Introduce the binary variables γi,s and γboth

i,l defined as

γi,s =

{
1, if the train for capacity corridor i stops at station s,

0, otherwise.

(B.4)
and

γboth
i,l =


1, if the train for capacity corridor i stops at both ends

of track section l,

0, otherwise.

(B.5)
The constraints on the dwell times are a modification to the con-
straints on the dwell times for trains at the stations and on the track
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sections from Equation (A.2) and Equations (A.5)-(A.11) in the Ap-
pendix A.1. The constraints on the capacity corridors are

ωmin
i,s ≤ ωi,s i ∈ C, s ∈ Sl, l ∈ L (B.6)

ωi,s ≤ ωmin
i,s + δi,s +Mγi,s i ∈ C, s ∈ Sl, l ∈ L (B.7)

ωFFi,l ≤ ωi,l i ∈ C, l ∈ LFFl , l ∈ L (B.8)

ωSFi,l γi,l−1 ≤ ωi,l i ∈ C, l ∈ LSFl , l ∈ L (B.9)

ωFSi,l γi,l+1 ≤ ωi,l i ∈ C, l ∈ LFSl , l ∈ L
(B.10)

γi,l−1 + γi,l+1 ≤ 1 + γboth
i,l i ∈ C, l ∈ LSSl , l ∈ L

(B.11)

ωSSi,l γ
both
i,l ≤ ωi,l i ∈ C, l ∈ LSSl , l ∈ L

(B.12)

ωi,g ≤ ωmax
i,g i ∈ C, g ∈ Gl, l ∈ L. (B.13)

where δi,s is a small number, ωmin
i,s is the minimum dwell time as a

station, ωmax
i,s is the maximum dwell time at a station, ωFFi,l is the

minimum travel time on a track section when the train does not stop
at either ends, ωSFi,l is the minimum travel time on a track section

where the train accelerates from a stop, ωFSi,l is the minimum travel

time on a track section where the train decelerates to a stop and ωSSi,l is
the minimum travel time on a track section where both acceleration
and deceleration are included. All these parameters are constants.
Consult Appendix A.1 for a full explanation of the constraints.

The capacity corridor is also constrained by the delivery commit-
ment request. The constraints that enforce this are

hmax
i,g ≤ lmax

i,g i ∈ C, g ∈ Gl, l ∈ L (B.14)

hmin
i,g ≥ lmin

i,g i ∈ C, g ∈ Gl, l ∈ L. (B.15)

B.2 Interaction constraints
Inside the capacity corridors, there should be no conflicts with other
trains. To enforce this, the interaction constraints from Appendix A.2
are slightly modified. There are also interaction constraints for when
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corridors interact with each other. In this section, we will describe
these constraints.

B.2.1 Capacity corridor interaction
The track capacity corridors are not allowed to overlap each other.
To enforce this, the track capacity corridors are ordered. Let i0 de-
note the first capacity corridor. The interaction between the capacity
corridors is then constrained with the following constraint,

hmax
i−1,g ≤ hmin

i,g ∀g ∈ Gl, l ∈ L, i ∈ C \ {i0}. (B.16)

This constraint makes sure that the capacity corridors do not overlap.

B.2.2 Capacity corridor and train interaction
The constraints for the interactions, i.e. crossings and overtakings,
between capacity corridors and trains are a modification to the con-
straints for interactions between trains, introduced in Appendix A.2.
In this section the constraints are only stated with a reference to
the explanation of the corresponding constraint for train and train
interaction.

To model the interaction between capacity corridors and trains,
the binary variables yi,rg and yr,ig are introduced, such that

yi,rg =

{
1, if corridor i arrives before r at geographic location g,

0, otherwise.

(B.17)
and

yr,ig =

{
1, if train r arrives before corridor i at geographic location g,

0, otherwise.

(B.18)
Further, let SS(i, r) be the set of stations on a single track where

corridor i and train r can interact. Similarly, let SD(i, r) and LD(i, r)
be possible interaction locations for corridor i and train r on stations
on a double track and double track sections, respectively. The cor-
ridors and trains that can interact is given in the set KC . The set
of corridors and trains that can interact for which the arrival order
matter is given by the set KAC and for which the arrival order does
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not matter is given by the set KNC .The rest of this section describes
the constraints for crossings at stations and links and overtakings.

Crossings at single track stations
The constraints for when a track capacity corridor cross a train cor-
respond to the constraints in Equation (A.16) - (A.18). Let tr,s be

the time train r arrives to station s and let ∆i,r
s be the safety buffer

time between a track capacity corridor i and a train r at station s.
This safety buffer time is the same as for interactions between trains
since the track capacity corridor should span track capacity where a
train can be planned. The constraints for track capacity corridor and
train crossing at a singe track station are

hmax
i,s + ∆i,r

s − tr,s ≤ M(1− yi,rs ) s ∈ SS(i, r), (i, r) ∈ KAC
(B.19)

tr,s − hmin
i,s+1 ≤ M(1− yi,rs ) s ∈ SS(i, r), (i, r) ∈ KAC

(B.20)

yi,rs ≤ γi,s s ∈ SS(i, r), (i, r) ∈ KAC
(B.21)

tr,s + ∆i,r
s − hmin

i,s ≤ M(1− yr,is ) s ∈ SS(r, i), (r, i) ∈ KAC
(B.22)

hmax
i,s − tr,s+1 ≤ M(1− yr,is ) s ∈ SS(r, i), (r, i) ∈ KAC

(B.23)

yr,is ≤ γr,s s ∈ SS(r, i), (r, i) ∈ KAC .
(B.24)

Equation (B.19)-(B.21) impose a correct interaction with safety
precautions if the capacity corridors ends before the train arrives.
Equation (B.22)-(B.24) impose constraints if the train arrives to the
interaction location before the capacity corridor starts.

Crossings at double track stations
The constraints for crossings between track capacity corridors and
trains, stated in this section, correspond to the constraints in Equa-
tion (A.19)-(A.20). To enforce a safe crossing for a track capacity
corridor and a train, the constraints
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hmax
i,s − tr,s ≤ M(1− yi,rs ) s ∈ SD(i, r), (i, r) ∈ KAC (B.25)

tr,s − hmin
i,s+1 ≤ M(1− yi,rs ) s ∈ SD(i, r), (i, r) ∈ KAC (B.26)

tr,s − hmin
i,s ≤ M(1− yr,is ) s ∈ SD(i, r), (r, i) ∈ KAC (B.27)

hmax
i,s − tr,s+1 ≤ M(1− yr,is ) s ∈ SD(i, r), (r, i) ∈ KAC (B.28)

are introduced. Equation (B.25) and (B.26) impose constraints for
interactions between train and capacity corridor when the capacity
corridor starts before the arrival of the train. Equation (B.27) and
(B.28) impose constraints for interactions if the train arrives to the
interaction before the start of the capacity corridor.

Crossings at double track sections
The constraints for crossings between track capacity corridors and
trains at double track sections correspond to the constraints in Equa-
tion (A.21) and (A.22). The constraints enforcing this are

hmax
i,l − tr,l ≤ M(1− yi,rl ) l ∈ LD(i, r), (i, r) ∈ KAC (B.29)

tr,l − hmin
i,l+1 ≤ M(1− yi,rl ) l ∈ LD(i, r), (i, r) ∈ KAC (B.30)

tr,l − hmin
i,l ≤ M(1− yr,il ) l ∈ LD(i, r), (r, i) ∈ KAC (B.31)

hmax
i,l − tr,l+1 ≤ M(1− yr,il ) l ∈ LD(i, r), (r, i) ∈ KAC . (B.32)

Equation (B.29) and (B.30) enforce safety precautions when the ca-
pacity corridors ends before the arrival of the train. Equation (B.31)
and (B.32) enforce the same safety precautions if the train arrives to
the interaction location before the start of the capacity corridor.

No crossing
The constraints modeling if the crossing between the track capacity
corridor and train occurs outside the railway network correspond to
the constraint for crossings between trains in Equation (A.23). The
constraints are

hmax
i,gfi,r
− tr,glr,i ≥ M(yi,rout − 1) (r, i) ∈ KC (B.33)

t
r,gfr,i
− hmin

i,gli,r
≥ M(yr,iout − 1) (i, r) ∈ KC . (B.34)
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Equation (B.33) enforce a constraint if the train arrives before the
capacity corridor starts. Equation (B.34) enforces a constraint if the
capacity corridor ends before the train arrives.

Choosing interaction location
The constraint for choosing an interaction location in Equation (A.24)
needs to be modified into the constraint

∑
s∈SS(i,r)

(yi,rs + yr,is ) +
∑

s∈SD(i,r)

(yi,rs + yr,is ) +
∑

l∈LD(i,r)

(yi,rl + yr,il )

+yi,rout + yr,iout = 1, (i, r) ∈ KC ,
(B.35)

to correctly chose interaction location for interactions between trains
and track capacity corridors.

Overtakings
To set constraints on overtakings between corridor and trains, intro-
duce the binary variables xr,is , pr,is and pi,rs such that

xr,is =

{
1, train r and corridor i overlap at station s,

0, otherwise.
(B.36)

pr,is =

{
1, corridor i arrives to a station s before train r departs,

0, otherwise.

(B.37)
and

pi,rs =

{
1, train r arrives to a station s before corridor i departs,

0, otherwise.

(B.38)
The constraints for overtakings between corridors and trains are a

modification to the constraints given in Equation (A.27)-(A.32). To
ensure secure overtakings between track capacity corridors and trains,
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the constraints

tr,s+1 − hmax
i,g ≤ Mpr,is s ∈ SO(r, i), (r, i) ∈ KO (B.39)

hmin
i,g − tr,s+1 ≤ M(1− pr,is ) s ∈ SO(r, i), (r, i) ∈ KO (B.40)

hmin
i,g − tr′,s ≤ Mpi,rs s ∈ SO(r, i), (r, i) ∈ KO (B.41)

tr′,s − hmax
i,g ≤ M(1− pi,rs ) s ∈ SO(r, i), (r, i) ∈ KO (B.42)

pr,is + pi,rs ≤ xr,r
′

s + 1 s ∈ SO(r, i), (r, i) ∈ KO (B.43)

xr,is ≤ pr,is s ∈ SO(r, i), (r, i) ∈ KO (B.44)

xr,is ≤ pi,rs s ∈ SO(r, i), (r, i) ∈ KO (B.45)

yi,rg ≤ xr,is s ∈ SO(r, i), (r, i) ∈ KO (B.46)

are enforced.

Ordering variables
Similar to when trains overtake each other, the order should be kept
track of when capacity corridors and trains overtake each other. To
do this, introduce the binary variable vr,is , such that

vr,is =

{
1, if corridor i arrives before train r to geographic location g,

0, otherwise.

(B.47)
The constraints ensuring the appropriate train order are a refor-

mulation from the constraints in Equation (A.34) and (A.35). The
reformulated constraints are

vr,is − v
r,i
s+1 ≤ yi,rg s ∈ S(r, i), (r, i) ∈ KO (B.48)

vr,is+1 − v
r,i
s ≤ yi,rg s ∈ S(r, i), (r, i) ∈ KO. (B.49)

This constraint corresponds to the constraint in Equation (A.36).
The constraints ensuring the added stopping time at a station if

an interaction occur are

vr,is − yi,rg ≤ 1 + γ s ∈ S(r, i), (r, i) ∈ KO (B.50)

1− vr,is − yi,rg ≤ 1− γ s ∈ S(r, i), (r, i) ∈ KO. (B.51)

This constraint correspond to the constraint in Equation (A.37).
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B.3 Safety regulation constraints
Similar to when trains interact, there must be a safety buffer time
when a train interact with a corridor. In the optimization model,
there are the following cases:

1 Station requiring 3 minutes between train r and r′.

2 Station requiring 2 minutes between train r and r′.

3 Station requiring 1 minutes between train r and r′ or both trains
must stop.

These are the same cases as when trains interact. In this section, the
reformulated constraints enforcing the safety buffer times are stated,
along with a reference to the original constraint.

Safety buffer times at stations
The idea of how to enforce a safety buffer time between the track
capacity corridors and trains at stations is similar to how it is done
for the safety buffer time between trains. The binary variable wr,is is
introduces and defined as

wr,is =

{
1, safety buffer time is 1 minute,

0, no safety buffer time.
(B.52)

The constraints enforcing a safety buffer time between train and
capacity corridor are

hmin
i,g − tr,s −∆i,r

s (1− γi,s) ≥ M(vr,is − 1),

∀s ∈ SM ∩ SO(r, i), (r, i) ∈ KO
(B.53)

hmin
i,g − tr,s −∆i,r

s (1− γr,s) ≥ M(vr,is − 1),

∀s ∈ SM ∩ SO(r, i), (r, i) ∈ KO
(B.54)

tr,s − hmax
i,g −∆r,i

s (1− γr,s) ≥ −Mvr,is ,

∀s ∈ SM ∩ SO(r, i), (r, i) ∈ KO
(B.55)
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tr,s − hh−∆r,i
s (1− γi,s) ≥ −Mvr,is ,

∀s ∈ SM ∩ SO(r, i), (r, i) ∈ KO
(B.56)

hmin
i,g − tr,s − wr,is ≥ M(vr,is − 1),

∀s ∈ SF ∩ SO(r, i), (r, i) ∈ KO
(B.57)

tr,s − hmax
i,g − wr

′,r
s ≥ −Mvr,is ,

∀s ∈ SF ∩ SO(r, i), (r, i) ∈ KO.
(B.58)

These constraints are a reformulation of the constraints for safety
buffer times between trains at stations in Equation (A.39) - (A.44).

Safety buffer times at single track sections
The safety buffer time at singe track sections between capacity corri-
dors and trains are enforced using the constraints

hmin
i,l − tr,l+1 −∆i,r

l (1− γi,l−1) ≥ M(vr,il − 1),

∀l ∈ LS(r) ∩ LS(i), (ri) ∈ KO
(B.59)

tr,l − hmax
i,l+1 −∆r,i

l (1− γr,l−1) ≥ −Mvr,il ,

∀l ∈ LS(r) ∩ LS(i), (r, i) ∈ KO
(B.60)

These constraints correspond to the constraints for safety buffer times
between trains on singe track sections in Equation (A.45)-(A.46).

Safety buffer times at double track sections
The safety buffer time must also be implemented on double track
sections. The constraints enforcing this on interactions between trains
and capacity corridors on double track sections are

hmin
i,l − tr,l −∆i,r

s ≥ M(vr,is − 1) l ∈ LD(r) ∩ LD(i), (r, i) ∈ KO
(B.61)

tr,l − hmax
i,l −∆r,i

s ≥ −Mvr,is l ∈ LD(r) ∩ LD(i), (r, i) ∈ KO.
(B.62)

These correspond to the constraints for the safety buffer times be-
tween trains on double track sections in Equation (A.47)-(A.48).
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B.4 Objective function
The objective of the optimization model and the track capacity corri-
dors is to find the available track capacity for a delivery commitment
request given a number of existing delivery commitments. This is
done by maximizing the size of the track capacity corridors, which is
the width of the time interval [hmin

i,g , h
max
i,g ] for all stations and capacity

corridors. The purpose of finding the available track capacity is to
calculate the maximum number of train paths that can fit into the
available track capacity. The number of train paths on the available
track capacity is constrained on the bottleneck of each capacity cor-
ridor. Thus, it is these bottlenecks that should be maximized. This
means that in the optimization model the main objective to maximize
is

max
∑
l∈L

min
g∈Gdcl

{∑
i∈C

(
hmax
i,g − hmin

i,g

)}
. (B.63)
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